期刊文献+

指向Lyapunov指数及其在单输入单输出系统故障检测中的应用 被引量:1

Directional Lyapunov exponent and its application to fault detection of the single input single output system
原文传递
导出
摘要 针对单输入单输出系统的故障检测,采用混沌振荡器作为激励源,并利用非一致延迟时间法对被测系统输出时间序列进行相空间重构。在相空间中平衡点附近定义了指向Lyapunov指数,并用其对被测系统输出在相空间中平衡点附近特征结构进行分析,实现了对单输入单输出系统的故障检测。仿真结果表明,被测系统的参数变化将会引起相空间中平衡点附近特征结构的改变,指向Lyapunov指数对其变化敏感。 In this paper, for the fault detection of a single-input single-output (SISO) system, we use chaotic oscillator to generate the excitation of the system under test (SUT), and use non-uniform method to reconstruct the phase space of the output time series. Directional Lyapunov exponent is defined around the equilibrium point in the phase space, and it is used to analyze the eigen-structure of the output phase space around its equilibrium point, thus the fault detection of the SISO system is realized. The simulation results show that parameter changes of the SUT will affect the phase space structure around its equilibrium point, and the directional Lyapunov exponent is sensitive to these changes.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第22期104-112,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61174207)资助的课题~~
关键词 混沌激励 指向Lyapunov指数 故障检测 单输入单输出系统 chaotic excitation directional Lyapunov exponent fault detection single input single output system
  • 相关文献

参考文献19

  • 1Isermann R, Balle P 1997 Control Eng. Pract. 5 709.
  • 2Logan D, Mathew J 1996 Mech. Syst. Signal Pr. 10 241.
  • 3杨东东, 马红光, 徐东辉, 冯晓伟 2014 物理学报 63 120508.
  • 4Li Q H, Tan J Y 2011 Chin. Phys. B 20 040505.
  • 5Mandelbrot B B 1985 Phys. Scripta 32 257.
  • 6Nichols J M, Todd M D, Wait J R 2003 Smart. Mater. Struct. 12 580.
  • 7Todd M D, Erickson K, Chang L, Lee K, Nichols J M 2004 Chaos 14 387.
  • 8夏恒超,詹永麒.基于近邻轨道平均长度的混沌时间序列分类方法[J].物理学报,2004,53(5):1299-1304. 被引量:5
  • 9Nichols J M, Trickey S T, Todd M D, Virgin L N 2003 Meccanica 38 239.
  • 10Nichols J M, Nichols C J, Todd M D, Seaver M, Trickey S T, Virgin L N 2004 Smart. Mater. Struct. 13 241.

二级参考文献2

共引文献4

同被引文献8

  • 1Han H T, Ma H G, Xu D H, et al. Non-parametric identification method of GFRFs for MIMO nonlinear system excited by muhitone sig- nal. Journal of Sound and Vibration, 2013; 332(10) : 2562-2574.
  • 2Frel M G, Osorio I. Intrinsic time-scale decomposition : time-frequen- cy-energy analysis and real-tlme filtering of non-stationary signals. Proceedings of the Royal Scciety of Lotldon A, 2006 ; 463 (2078) : 321 -342.
  • 3Uffinger M, Sadlo F, Kirby M, et al. FTLE computation beyond first- order approximation. Eurographics, 2012 : 61--64.
  • 4Kennel M B, Brwon R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical con- struction. Physical Review A, 1992 ; 45 (6) : 3403-3411.
  • 5Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 2003; 91 ( 3 ) : 034101-4)34113.
  • 6Overbay L A, Olson C C, Todd M D. A parametric investigation of state-space-based prediction error methods with stochastic excitation for structural health monitoring. Smart Materials and Structures, 2007; 16(5): 1621-1633.
  • 7杨英华,魏玉龙,李召,秦树凯.基于子空间混合相似度的过程监测与故障诊断[J].仪器仪表学报,2013,34(4):935-941. 被引量:10
  • 8杨东东,马红光,徐东辉,冯晓伟.单输入单输出系统故障检测中匹配混沌激励的设计[J].物理学报,2014,63(12):75-83. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部