期刊文献+

炸药爆轰的连续介质本构模型和数值计算方法

A continuum constitutive model and computational method of explosive detonation
原文传递
导出
摘要 假定炸药和爆轰产物处于局部热力学平衡状态,即它们的压力和温度相同,利用热力学基本关系建立炸药爆轰过程的连续介质本构模型的一般理论框架.在此框架下,炸药爆轰本构模型由一组常微分方程构成,包括炸药和爆轰产物的状态方程、简单混合法则、化学反应速率方程和能量守恒方程,易于由成熟的计算方法如梯形法等进行求解.一组广义Maxwell型非线性固体本构形式的微分方程描述了压力和温度随时间的演化速率与应变率和化学反应速率的关系,借助简单混合物理论,其中的系数由炸药和爆轰产物的材料参数确定.未反应的炸药和爆轰产物采用JWL状态方程,化学反应率方程采用Lee-Tarver点火-燃烧二项式模型,模拟PBX-9404炸药的一维冲击波起爆过程和爆轰波传播过程.计算结果表明了本文给出的本构模型和相应计算方法的有效性. Some basic thermodynamic relationships are used to develop a theroretical framework for modeling the detonation in explosives, on the assumption that explosive and detonation product are in a local thermodynamic equilibrium state, i.e., their pressures and temperatures are identical. Using this framework, a continuum constitutive model for explosive detonation is composed of a group of ordinary differential equations including the state equations of explosive and its product, simple mixing law, reaction rate equation and energy conservation equation, which are easily solved by a mature computational method such as trapezoidal rule. A group of nonlinear constitutive equations in a generalized Maxwellian form describe the relationship among the time evolution rates of pressure and temperature, the strain rate, and the chemical reaction rate. Coefficients appearing in the constitutive equations are determined only by parameters of the explosive and the product through using simple mixing rule. The continuum constitutive model and the corresponding computational method are verified by simulating the detonation behaviour of PBX9404 impacted by high velocity Cu flyer, and in the simulation the JWL equation of state for unreacted explosive and detonation product and the two-term Lee-Tarver reaction rate equation are adopted.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第22期243-247,共5页 Acta Physica Sinica
基金 中国工程物理研究院科学技术发展基金(批准号:2013A0201010 2013B0101014) 国家自然科学基金(批准号:11272064)资助的课题~~
关键词 炸药爆轰 本构模型 化学反应率方程 数值模拟 explosive detonation constitutive equation reaction rate numerical simulation
  • 相关文献

参考文献9

  • 1Mader C L 2008 Numerical Modeling of Explosives and Propellants (New York: CRC Press) p373.
  • 2Johnson J N, Tang P K, Forest C A 1985 J. Appl. Phys. 57 4323.
  • 3孙承纬.一维冲击波和爆轰波计算程序SSS[J].计算物理,1986,3(2):142-154.
  • 4Brenan K E, Campbell S L, Petzold L R 1996 Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (Philadelphia: SIAM) p4.
  • 5Ascher Uri M, Petzold L R 1998 Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (Philadelphia: SIAM).
  • 6Hayes D B 1975 J. Appl. Phys. 46 3438.
  • 7Johnson J N 1981 J. Appl. Phys. 52 2812.
  • 8孙海权,张文宏.散心爆轰数值模拟中人为粘性与空间步长的匹配关系[J].含能材料,2006,14(1):16-20. 被引量:2
  • 9Lee E L, Tarver C M 1980 Phys. Fluids 23 2362.

二级参考文献9

  • 1Mader C L. Detonation wave interactions [ A ]. 7th International Symposium on Detonation [ C ], Virginia: Naval Surface Weapons Center, 1981.
  • 2孙承纬.自持的和活塞驱动的散心爆轰波[J].爆炸与冲击,1987,7(1):15-26.
  • 3李智伟 刘邦弟.散心爆轰的数值模拟[J].计算物理,1985,2(1):55-66.
  • 4曹菊珍.爆轰波数值计算中人为粘性与空间步长的匹配关系[J].爆炸与冲击,1986,6(2):137-142.
  • 5朱建士 魏振典 周德忠.定常爆轰数值模拟中人为粘性与人为反应率的选取[J].爆炸与冲击,1983,3(1):21-26.
  • 6刘尔岩.常爆轰数值模拟中化学反应率与人为粘性的相关性[J].爆炸与冲击,1985,5(3):35-41.
  • 7Mader C L. Numerical Modeling of Detonation [ M ]. Los Angeles:University of Califonia Press,1979.
  • 8Chevet R, Verder G. Divergent spherical detonation wave in a solid explosive [ A ]. 5th International Symposium on Detonation [ C ],Virginia: Office of Naval Research, 1970,31 - 39.
  • 9刘尔岩,王元书.高能炸药散心爆轰波绕射传播的数值模拟[J].爆炸与冲击,2000,20(1):64-67. 被引量:12

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部