期刊文献+

气体放电系统中多臂螺旋波的数值分析 被引量:1

Numerical analysis on multi-armed spiral patterns in gas discharge system
原文传递
导出
摘要 采用Purwins的三变量模型,在二维空间对气体放电系统中多臂螺旋波的形成和转化进行了数值研究.通过分析方程参数对系统空间的影响,确定了系统获得稳定螺旋波的参数空间;得到了斑图由简单静态六边形到螺旋波的演化过程,分析了螺旋波的形成机制和时空特性;进一步获得六种不同臂数的多臂螺旋波斑图(例如:双臂、三臂、四臂、五臂、六臂和七臂螺旋波).结果表明:螺旋波斑图出现在图灵-霍普夫(Turing-Hopf)空间,是Turing模和Hopf模相互竞争、相互作用的结果;不同臂数的螺旋波波头均在持续地旋转运动,其运动速度随螺旋波臂数的增加而增大;随着螺旋波臂数的增加,其波头的运动形式愈加复杂;由于受微扰及边界条件的影响,多臂螺旋波可以向臂数少一的螺旋波发生转变,数值模拟结果与实验结果符合较好. The process of formation or transformation of multi-armed spiral patterns in gas discharge system is investigated numerically by using H.-G. Purwins model with three components. The parameter space is obtained though analyzing the influence of system parameters on system space, where a stable spiral appears. Besides, the formation mechanism and spatiotemporal characteristics of spiral pattern are studied. In addition, the evolution process of pattern from simple hexagon to spiral wave is numerically simulated, and various kinds of spirals are obtained (including two-armed, three-armed, four-armed, five-armed, six-armed, and seven-armed spirals). It is found that the stable spiral only survives in Turing-Hopf space, which is the result of interaction between Turing mode and Hopf mode. Furthermore, the spiral tips constantly rotate for various spiral patterns, and the velocity increases with the number of spiral arm increasing. For the influences of perturbation and boundary conditions, the multi-armed spiral pattern can lose one arm and become a new spiral in the rotating process. In conclusion, the numerical simulation results are in good agreement with those obtained in gas discharge experiment.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第22期396-405,共10页 Acta Physica Sinica
基金 国家自然科学基金青年科学基金(批准号:51201057) 河北省自然科学基金(批准号:A2014208171) 河北科技大学科研基金(批准号:QD201225 SW09)资助的课题~~
关键词 螺旋波 数值模拟 气体放电 spiral pattern numerical simulation gas discharge
  • 相关文献

参考文献28

  • 1Thakur P, Ann H B, Jiang I 2009 Astrophys. J. 69 3586.
  • 2Cysyk J, Tung L 2008 Biophys. J. 94 1533.
  • 3Sawai S, Thomason P A, Cox E C 2005 Nature 433 323.
  • 4Vasiev B, Siegert F, Weijer C 1997 Phys. Rev. Lett. 78 2489.
  • 5de Bruyn J R, Lewis B C, Shattuck M D, Swinney H L 2001 Phys. Rev. E 63 041305.
  • 6Zaritski R M, Pertsov A M 2002 Phys. Rev. E 66 066120.
  • 7Guo H Y, Li L, Ouyang Q 2003 J. Chem. Phys. 118 5038.
  • 8Zhang H, Ruan X S, Hu B, Ouyang Q 2004 Phys. Rev. E 70 016202.
  • 9Aranson L S, Aranson L, Kramer L, Weber A 1992 Phys. Rev. A 46 R2992.
  • 10Zaikin A N, Zhabotinsky A M 1970 Nature 225 535.

二级参考文献7

  • 1[1]Boyers D G and Tiller W A 1982 Appl. Phys. Lett. 41 28
  • 2[2]Dong L F, Li X C, Yin Z Q, Qian S F, Ouyang J T and Wang L 2001 Chin. Phys. Lett.18 1380
  • 3[3]Strumple C, Purwins H G and Astrov Y A 2001 Phys. Rev. E 63 026409
  • 4[4]Muller I, Punset C, Ammelt E, Purwins H G and Boeuf J P 1999 IEEE Trans. Plasma Sci. 27 20
  • 5[5]Breazeal W, Flynn K M and Gwinn E G 1995 Phys. Rev. E 52 1503
  • 6[6]Guikema J, Miller N, Niehof J, Klein M and Walhout M 2000 Phys. Rev. Lett. 85 3817
  • 7[7]Klein M, Miller N and Walhout M 2001, Phys. Rev. E 64 026402

共引文献13

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部