摘要
为了给管道检测机器人的电气工作装置提供充足的电能,该文提出一种利用管道内天然气流体动能的管道检测机器人自主发电系统,推导出了各个环节的工作原理方程。利用管道内天然气的流体速度动力冲击机器人尾部叶轮,以及泄流前后的流体速度差,将流体动能转换为发电机的电能。通过对管道检测机器人速度控制装置的泄流状态的分析,建立了受控速度方程;在控制速度条件下,得出了叶轮机叶片的受力方程,并给出了单位时间内管道内流体扫过叶轮机的动能与泄流前后流体速度差的关系方程,并进一步导出了流体动能转化为电能的方程。针对管道内天然气流体速度随时间不规则变化的影响因素,采用了叶轮机最大功率捕获控制策略使自主发电系统的能量转换效率达到最大。对提出的管道检测机器人自主发电系统进行了流体的流固耦合仿真和电气的Matlab仿真。仿真结果表明:该流固耦合式管道检测机器人自主发电系统的工作原理可行,叶轮机额定输出功率在80W左右,而管道检测机器人的用电功率在30W左右,该自主发电系统可满足管道检测机器人系统的供电要求。
A pipeline robot power generation system is developed to provide power for the electrical systems in the pipeline robot. This paper presents the principal equations for the model. The hydrodynamics of the pipeline gas are used with the pipeline gas hitting the robot tail impeller and the speed or pressure difference driving the generator. The venting state of the pipeline robot speed controller is used to derive the controlled speed. The forces on the turbine blades are given as a functional speed difference as well as the kinetic energy as the pipe fluid sweeps across the impeller to give an energy conversion equation. The factors that affect the speed of natural gas in the pipeline vary irregularly with time, so a maximum power capture control strategy is used to maximize the conversion of the flow energy to electrical energy. The fluid-structure interactions and the electrical systems are simulated to predict the performance of the power generation system by the Matlab. The results show that the power generating system is effective with a power output of about 80 W that is much greater than the power consumed by the pipeline robot of about 30 W.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第9期1155-1160,共6页
Journal of Tsinghua University(Science and Technology)
基金
清华大学自主研究项目(2012THZ07122)
国家科技支撑计划项目(2012BAH32F05)
关键词
发电
流体动力学
最大功率
捕获技术
石油管道
power generating
hydrodynamics
maximum power capture technology
oil pipeline