期刊文献+

社会化网络中信任推荐研究综述 被引量:11

A Review of Research on Trust Recommendation in Social Networks
原文传递
导出
摘要 【目的】探讨社会化网络的发展对解决传统的个性化推荐系统面临的诸如数据稀疏性、冷启动等问题的作用。【文献范围】以社会化网络作为分析背景,从Springer、Google Scholar检索2004年至今国内外关于信任推荐的研究文献。【方法】基于信任与不信任两方面对相关文献进行梳理总结,形成综述。【结果】指出当前研究中存在信任计算方法不足,缺乏对不信任因素的深入研究等问题。【局限】由于研究因素单一,应结合社会化网络中出现的其他因素进行深入对比分析。【结论】未来的研究可以从基于情境信任的推荐、挖掘社会化网络中的弱连接关系等方向开展。 [Objective] Discuss the role of social networks to solve problems such as data sparseness and cold start of traditional personalized recommendation systems. [Coverage] This paper retrieves research literatures about trust recommendation at home and abroad from Springer and Google Scholar since 2004. [Methods] It summarizes the related literatures from perspectives of trust and distrust. [Results] Based on the summary, this paper demonstrates the existing problems such as the deficiency of calculation method for trust and lack of in-depth study of distrust and so on. [Limitations] Other factors in social networks should be combined with trust in an in-depth comparative analysis. [Conclusions] Context-aware trust recommendation, mining the value of weak relationship in social networks can be new valuable research directions in future.
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第11期10-16,共7页 New Technology of Library and Information Service
基金 国家社会科学基金项目"数字图书馆标签系统的语义挖掘研究"(项目编号:12CTQ003)的研究成果之一
关键词 个性化推荐 社会化网络 信任推荐 Personalized recommendation Social networks Trust recommendation
  • 相关文献

参考文献39

  • 1Jannach D, Zanker M, Felfeming A, et al. RecommenderSystems: An Introduction [M]. Cambridge University Press,2010.
  • 2Sinha R R, Swearingen K. Comparing RecommendationsMade by Online Systems and Friends [C]. In: Proceedings ofthe 2nd DELOS Network of Excellence Workshop onPersonalisation and Recommender Systems in DigitalLibraries, Dublin City University, Ireland. 2001.
  • 3McKnight H, Chervany N. The Meaning of Trust [R],Technical Report MISRC 96-04, Management InformationSystems Research Center, University of Minnesota, USA,1996.
  • 4方曙光.“弱关系”和“强关系”下的网络互动和网络运动[J].北京理工大学学报(社会科学版),2014,16(2):135-141. 被引量:15
  • 5Mui L, Mohtashemi M, Halberstadt A. A ComputationalModel of Trust and Reputation for E-businesses [C]. In:Proceedings of the 35th Annual Hawaii InternationalConference on System Sciences. 2002: 188-196.
  • 6Weng J, Miao C, Goh A. Improving Collaborative Filteringwith Trust-based Metrics [C]. In: Proceedings of the 2006ACM Symposium on Applied Computing. 2006: 1860-1864.
  • 7Massa P, Avesani P. Trust Metrics in RecommenderSystems[A]//GolbeckJ. Computing with Social Trust Human-Computer Interaction Series 2009 [M]. Springer London,2009: 259-285.
  • 8Avesani P, Massa P, Tiella R. A Trust-enhanced RecommenderSystem Application: Moleskiing [C], In: Proceedings of the2005 ACM Symposium on Applied Computing, Santa Fe,New Mexico, USA. 2005: 1589-1593.
  • 9Zhang Y, Wu Z H, Chen H J, et al. Mining Target MarketingGroups from Users’ Web of Trust on Epinions [C]. In:Proceedings of the 2008 AAAI Spring Symposium. 2008:116-121.
  • 10Golbeck J. Generating Predictive Movie Recommendationsfrom Trust in Social Networks [C]. In: Proceedings of the 4thInternational Conference on Trust Management (iTrust,06),Pisa, Italy. Springer-Verlag Berlin, Heidelberg, 2006: 93-104.

二级参考文献25

  • 1Ma H, King I, Lyu M. Learning to recommend with social trust ensemble[CJ //Proc of the 32nd ACM Int Conf on Research and Development in Information Retrieval. New York: ACM, 2009: 203-210.
  • 2Ma H, Yang H, Lyu M, et al. Sorce. Social recommendation using probabilistic matrix factorization[CJ I/Proc of the 17th ACM Conf on Information and Knowledge Management. New York: ACM, 2008: 931-940.
  • 3Yeung A C, Iwata T. Strength of social influence in trust networks in product review sites[C] I/Proc of the 4th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2011: 495-504.
  • 4Yang X, Steck H, Liu Y. Circle-based recommendation in online social networks[CJ I/Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2013: 1267-1275.
  • 5Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[CJ I/Proc of the 4th ACM Conf on Recommender Systems. New York: ACM, 2010: 135-142.
  • 6lin R, ChaiJ, Si L. An automatic weighting scheme for collaborative filtering[C] //Proc of the 27th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2004: 337-344.
  • 7Xue G, Lin C, Yang Q, et al. Scalable collaborative filtering using cluster-based smoothing[CJ //Proc of the 28th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2005: 114-121.
  • 8Sarwar B, Karypis G, KonstanJ, et al. Item-based collaborative filtering recommendation algorithms[CJ IIProc of the 10th Int Conf on World Wide Web. New York: ACM, 2001: 285-295.
  • 9CannyJ. Collaborative filtering with privacy via factor analysis[CJ IIProc of the 25th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2002: 238-245.
  • 10Hofmann T. Collaborative filtering via gaussian probabilistic latent semantic analysis[CJ //Proc of the 26th Annual Int ACM SIGIR Conf on Research and Development in Informaion Retrieval. New York: ACM, 2003: 259-266.

共引文献53

同被引文献79

引证文献11

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部