摘要
【目的】探讨社会化网络的发展对解决传统的个性化推荐系统面临的诸如数据稀疏性、冷启动等问题的作用。【文献范围】以社会化网络作为分析背景,从Springer、Google Scholar检索2004年至今国内外关于信任推荐的研究文献。【方法】基于信任与不信任两方面对相关文献进行梳理总结,形成综述。【结果】指出当前研究中存在信任计算方法不足,缺乏对不信任因素的深入研究等问题。【局限】由于研究因素单一,应结合社会化网络中出现的其他因素进行深入对比分析。【结论】未来的研究可以从基于情境信任的推荐、挖掘社会化网络中的弱连接关系等方向开展。
[Objective] Discuss the role of social networks to solve problems such as data sparseness and cold start of traditional personalized recommendation systems. [Coverage] This paper retrieves research literatures about trust recommendation at home and abroad from Springer and Google Scholar since 2004. [Methods] It summarizes the related literatures from perspectives of trust and distrust. [Results] Based on the summary, this paper demonstrates the existing problems such as the deficiency of calculation method for trust and lack of in-depth study of distrust and so on. [Limitations] Other factors in social networks should be combined with trust in an in-depth comparative analysis. [Conclusions] Context-aware trust recommendation, mining the value of weak relationship in social networks can be new valuable research directions in future.
出处
《现代图书情报技术》
CSSCI
北大核心
2014年第11期10-16,共7页
New Technology of Library and Information Service
基金
国家社会科学基金项目"数字图书馆标签系统的语义挖掘研究"(项目编号:12CTQ003)的研究成果之一
关键词
个性化推荐
社会化网络
信任推荐
Personalized recommendation Social networks Trust recommendation