摘要
在一般复Banach空间X中的单位球B上引入一类全纯映照族M_g.考虑B上满足条件(Df(x))^(-1)f(x)∈M_g的正规化局部双全纯映照f(x)(其中x=0是f(x)-x的k+1阶零点)并得到其增长定理.作为应用,也得到了C^n中单位多圆柱D^n上映照f关于Jacobi矩阵Jf(z)的偏差定理,该结果统一和推广了星形映照许多子族的相应结论.
Let X be a complex Banach space with norm ||·||, B the unit ball in X. A class of holomorphic mappings Mg on B is introduced. Let f(x) be a normalized locally biholomorphic mappings on B such that (Df(x))^-1f(x) ∈Mg (where x = 0 is the zero of order k+1 of f(x)-x). The authors investigate the growth theorem for f(x). As applications, the distortion theorems for the Jacobian matrix Jf(z) are obtained, where f(z) belongs to the subclasses of starlike mappings defined on the unit polydisc D^n in C^n. These results unify and generalize the corresponding results of many subclasses of starlike mappings.
出处
《数学年刊(A辑)》
CSCD
北大核心
2014年第5期565-574,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10971063
No.11061015
No.11031008)
江西省自然科学基金(No.2010GZS0096)
浙江省自然科学基金(No.Y6110053)
江西省教育厅基金(No.GJJ09149)的资助
关键词
增长定理
偏差定理
星形映照的子族
Growth theorem, Distortion theorem, Subclasses of starlikemappings