期刊文献+

球面稳定同伦群中的ξ_n-相关元素的非平凡性 被引量:3

The Non-triviality of ξ_n-Related Elements in the Stable Homotopy Groups of Sphere
下载PDF
导出
摘要 利用Adams谱序列与May谱序列,发掘了球面稳定同伦群中一族ξ_n的相关元素.这里ξ_n∈π*M在Adams谱序列中由h_0h_n∈Ext_A^(2,p^nq+q)(H*M,Z_p)所表示,其中p≥7,n>3,q=2(p-1). Using the Adams spectral sequence and the May spectral sequence, the authors detect a ξn-related family in the stable homotopy groups of sphere. Here ξn ∈ π*S are represented by h0hn ∈ ExtA^2,p^nq+q(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n 〉 3, q=2(p-1).
出处 《数学年刊(A辑)》 CSCD 北大核心 2014年第5期575-582,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11301386 No.11026197 No.11071125 No.11226080 No.11001195) 天津市高校"优秀青年教师资助计划"(No.ZX110QN044) 天津师范大学博士基金(No.52XB1011) 天津大学自主创新基金(No.60302036 No.60302055) 北洋学者青年骨干教师计划项目(No.60301016)的资助
关键词 ADAMS谱序列 MAY谱序列 球面稳定同伦群 非平凡性 Adams spectral sequence, May spectral sequence, Stable homotopygroups of sphere, Non-triviality
  • 相关文献

参考文献18

  • 1Mahowald M. A new infinite family in 2S[J]. Topology, 1977, 16:249-256.
  • 2Cohen R. Odd primary infinite families in stable homotopy theory [J]. Memoirs of AMS, 1981,242:1-12.
  • 3Zhou X G. Higher cohomology operations that detect homotopy classes [J]. LectureNotes in Math, 1989, 1370:416-436.
  • 4Lee C N. Detection of some elements in stable homotopy groups of spheres [J]. MathZ, 1996, 222:231-246.
  • 5Lin J K. A new family of filtration three in the stable homotopy of spheres [J]. HiroshimaMath J, 2001, 31:477-492.
  • 6Wang X J, Zheng Q B. The convergence of a^hohk [J]. Sci China {English Seriers),1998, 41:622-628.
  • 7Liu X G. Some infinite elements in the Adams spectral sequence for the sphere spectrum[J]. J Math Kyoto Univ, 2008,48:617-629.
  • 8Liu X G. A Toda bracket in the stable homotopy groups of spheres [J]. Algebr GeomTopol, 2009,9:221-236.
  • 9Liu X G, Li W D. A product involving the /3-family in stable homotopy theory [J]. BullMalays Math Sci Soc, 2010,33:411-420.
  • 10Zhong L N, Wang Y Y. Detection of a nontrivial product in the stable homotopy groupsof spheres [J]. Algebr Geom Topol, 2013, 13:3009-3029.

同被引文献6

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部