摘要
考虑了R^n上n(n≥2)维向列型液晶流(u,d)当初值属于Q_α^(-1)(R^n,R^n)×Q_α(R^n,S^2)(其中α∈(0,1))时Cauchy问题的适定性,这里的Q_α(R^n)最早由Essen,Janson,Peng和Xiao(见[Essen M,Janson S,Peng L,Xiao J.Q space of several real variables,Indiana Univ Math J,2000,49:575-615])引入,是指由R^n中满足的所有可测函数f全体所组成的空间.上式左端在取遍Rn中所有以l(I)为边长且边平行于坐标轴的立方体I的全体中取上确界,而Q_α^(-1)(R^n):=▽·Q_α(R^n).最后证明了解(u,d)在类C([0,T);Q_(α,T)^(-1)(R^n,R^n))∩L_(loc)~∞((0,T);L~∞(R^n,R^n))×C([0,T);Q_α,T(R^n,S^2))∩L_(loc)~∞((0,T);W^(1,∞)(R^n,S^2))(其中0<T≤∞)中是唯一的.
The author investigates the well-posedness of the Cauchy problem of the ndimensional (n ≥ 2) hydrodynamic flow (u, d) of nematic liquid crystal materials on R^n with the initial data in Qα^-1(R^n, R^n) × Qα(R^n, S^2) with α ∈ (0, 1). Here, Qα(R^n), introduced by Essen, Janson, Peng and Xiao (see [Essen M, Janson S, Peng L, Xiao J. Q space of several real variables, Indiana Univ Math J, 2000, 49:575-615]), is the space of all measurable functions f on R^n, satisfying supI((l(I))^2α-n∫I∫I|f(x)-f(y)|^2/|x-y|^n+2αdxdy)^1/2〈∞where the supremum is taken over all cubes I with the edge length t(I) and tne edges parallel to the coordinate axes in R^n, and Qα^-1(R^n) := △↓· Qα(R^n). Moreover, for the nematic liquid crystal flow (u,d), it is shown that the solution is unique in the class C([0, T); C([0,T);Qa^-1,T(R^n,R^n))∩loc^∞((0,T);L^∞(R^n,R^n))×C([0,T);Qα,T(R^n,S^2))∩Lloc^∞((0,T);W^1,∞(R^n,S^2))for 0〈T≤∞
出处
《数学年刊(A辑)》
CSCD
北大核心
2014年第5期591-612,共22页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11401202
No.11171357)
数学天元基金(No.11326155)
湖南省自然科学基金(No.13JJ4043)的资助