期刊文献+

Some Properties of Abnormal Extremals on Lie Groups

Some Properties of Abnormal Extremals on Lie Groups
原文传递
导出
摘要 Let G be a connected Lie group and D be a bracket generating left invariant distribution.In this paper,first,we prove that all sub-Riemannian minimizers are smooth in Lie groups if the distribution D satisfies [D,[D,D]]D and [K,[K,K]]K for any proper sub-distribution K of D.Second,we prove that all sub-Riemannian minimizers are smooth in Lie group if the rank-3 distribution D satisfies Condition(B).Third,we discuss characterizations of normal extremals,abnormal extremals,rigid curves,and minimizers on product sub-riemannian Lie groups.We prove that not all strictly abnormal minimizers are rigid curves and construct a strictly abnormal minimizer which is not a rigid curve. Let G be a connected Lie group and D be a bracket generating left invariant distribution.In this paper,first,we prove that all sub-Riemannian minimizers are smooth in Lie groups if the distribution D satisfies [D,[D,D]]D and [K,[K,K]]K for any proper sub-distribution K of D.Second,we prove that all sub-Riemannian minimizers are smooth in Lie group if the rank-3 distribution D satisfies Condition(B).Third,we discuss characterizations of normal extremals,abnormal extremals,rigid curves,and minimizers on product sub-riemannian Lie groups.We prove that not all strictly abnormal minimizers are rigid curves and construct a strictly abnormal minimizer which is not a rigid curve.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第12期2119-2136,共18页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11071119 and 11401531)
关键词 EXTREMAL GEODESIC rigid curve Lie group Extremal, geodesic, rigid curve, Lie group
  • 相关文献

参考文献2

二级参考文献13

  • 1Bryant R, Hsu L. Rigidity of integral curves of rank 2 distributions. Invent Math, 1998, 114: 435-461.
  • 2Gole C, Karidi R. A note on Carnot geodesics in nilpotent Lie groups. J Dynam Control Sys, 1995, 1: 535-549.
  • 3Gromov M. Carnot-Caratheodory spaces seen from within. In: Bellaiche A, Risler J J, eds. Sub-Riemann Geometry. Basel: Birkhiiuser, 1996, 79 -323.
  • 4Hamenst.adt U. Some regularity theorems for Carnot-Caratheodory metrics. J Differential Geom, 1990, 32: 819-850.
  • 5Hsu L. Calculus of variations via the Griffith's formalism. J Differential Geom, 1991, 36: 551-591.
  • 6Karidi R. Realizing nilpotent Lie algebras and Lie groups. Submitted.
  • 7Liu W S, Sussmann H J. Shortest Paths for Sub-Riemannian Metrics on Rank-2 Distributions. Mem Amer Math Soc, 118. Providence, RI: Amer Math Soc, 1995.
  • 8Mitchell .1. On Carnot-Caratheodory metrics . J Differential Geom, 1985, 21: 85-45.
  • 9Montgomery R. Singular extrcmals on Lie groups. Math Control Signals Systems, 1994, 7: 217--234.
  • 10Montgomery R. Abnormal minimizers. SIAM J Control Optim, 1994, 32: 1605-1620.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部