期刊文献+

Isometric Immersions of Higher Codimension in to the Product S~κ×H^(n+p-k)

Isometric Immersions of Higher Codimension in to the Product S~κ×H^(n+p-k)
原文传递
导出
摘要 In this paper,we obtain a sufficient and necessary condition for a simply connected Riemannian manifold(M^n,g) to be isometrically immersed,as a submanifold with codimension p 〉 1,into the product S^k×H^n+p+k of sphere and hyperboloid. In this paper,we obtain a sufficient and necessary condition for a simply connected Riemannian manifold(M^n,g) to be isometrically immersed,as a submanifold with codimension p 〉 1,into the product S^k×H^n+p+k of sphere and hyperboloid.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第12期2146-2160,共15页 数学学报(英文版)
基金 Supported by NSFC(Grant Nos.11171091,11371018) partially supported by NSF of He'nan Province(Grant No.132300410141)
关键词 Isometric immersions of higher codimension product structure spheres and hyperboloids Isometric immersions of higher codimension, product structure, spheres and hyperboloids
  • 相关文献

参考文献3

  • 1J. H. Lira,R. Tojeiro,F. Vitório.A Bonnet theorem for isometric immersions into products of space forms[J].Archiv der Mathematik.2010(5)
  • 2Franki Dillen,Katsumi Nomizu,Luc Vranken.Conjugate connections and Radon’s theorem in affine differential geometry[J].Monatshefte für Mathematik.1990(3)
  • 3Franki Dillen.Equivalence theorems in affine differential geometry[J].Geometriae Dedicata.1989(1)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部