期刊文献+

Evolution Equations of Curvature Tensors Along the Hyperbolic Geometric Flow

Evolution Equations of Curvature Tensors Along the Hyperbolic Geometric Flow
原文传递
导出
摘要 The author considers the hyperbolic geometric flow introduced by Kong and Liu. Using the techniques and ideas to deal with the evolution equations along the Ricci flow by Brendle, the author derives the global forms of evolution equations for Levi-Civita connection and curvature tensors under the hyperbolic geometric flow. In addition, similarly to the Ricci flow case, it is shown that any solution to tile hyperbolic geometric flow that develops a singularity in finite time has unbounded Ricci curvature.
作者 Weijun LU
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第6期955-968,共14页 数学年刊(B辑英文版)
关键词 Hyperbolic geometric flow Evolution equations SINGULARITY 双曲几何 演化方程 曲率张量 Ricci曲率 有限时间 双曲线 联络 类似
  • 相关文献

参考文献2

二级参考文献8

  • 1R. Schoen and S.T. Yau, Lectures on Differential Geometry, International Press, Cambridge, MA (1994).
  • 2R.S. Hamilton, J. Differential Geom. 17 (1982) 255.
  • 3D.X. Kong, Hyperbolic Geometric Flow, in The Proceedings of ICCM 2007, Vol. H, Higher Educationial Press, Beijing (2007) pp. 95-110.
  • 4D.-X. Kong and K.-F. Liu, J. Math. Phys. 48 (2007) 103508.
  • 5S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford University Press, New York (1998).
  • 6W.R. Dai, D.X. Kong, and K.F. Liu, Pure and Applied Mathematics Quarterly: Special Issue Dedicated to appear M. Atiyah's 80th Birthday.
  • 7W.R. Dai, D.X. Kong, and K.F. Liu, arXiv:0709.2542.
  • 8D.X. Kong, K.F. Liu, and D.L. Xu, arXiv:0709.1607.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部