期刊文献+

基于多节点分组协作干扰的无线物理层安全传输 被引量:4

Grouping cooperative jamming for wireless physical layer security
原文传递
导出
摘要 针对无线通信的安全传输问题,提出了一种新的多节点分组协作干扰以增强安全的策略.在源节点发送私密信息的同时,传统协作干扰策略中所有的协作节点发送公共的人工噪声干扰窃听用户,而分组协作干扰策略中协作节点分组发送不同的人工噪声.为了保证人工噪声不干扰目的节点,协作干扰策略的波束形成系数的设计基于迫零准则.在节点独立功率约束的条件下,传统干扰策略无法有效的利用所有协作节点的阻塞功率,而分组干扰策略将每两个信道增益接近的节点划分为一组,从而保证组内的协作节点能近乎完全利用可用的阻塞总功率.仿真结果验证了最小距离分组干扰策略利用的阻塞总功率最大,也对应最大的平均安全速率.为更易于实现,文中还提出了基于相对距离的固定分组策略.除此之外,文中还考虑了人工噪声泄露的情况,此时传统协作干扰策略完全失效,而分组协作干扰策略即便是只有一组有效,也可以保证平均安全速率依然随协作节点最大发射功率增大而增大.实验结果证实了分组协作干扰策略要优于传统协作干扰策略. In this paper, we propose a novel scheme of grouping cooperative jamming (C J) for secure communi- cation. During the data transmission, the source broadcasts its information signal, all the helpers simultaneously transmit common artificial noise (AN) to interfere the eavesdropper for tradition CJ. In our scheme, all the helpers are divided to different groups which transmit independent artificial noises to the potential eavesdropper. The zero-forcing beamfomer is selected to cancel the AN out at the destination. The tradition CJ scheme can not completely consume the total power budget, while the grouping scheme is based on the instantaneously channel gain which can make best of the total power per group. The simulations show that our propose scheme based on minimum distance achieves the highest secrecy rate and the power actual consumed approaches to the total power budget. Additionally, we propose a fixed grouping scheme based on the second-order statistics of the channel gain which can be easily implemented. Furthermore, we consider the case that the eavesdropper has knowledge of the artificial noise. The tradition CJ does not work in such case, while our scheme works well even only one group keeps its AN secret. The analytical results and simulations show our scheme achieves better performance than the tradition CJ.
出处 《中国科学:信息科学》 CSCD 2014年第11期1482-1494,共13页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61102081,61172092)、国家自然科学基金创新群体(批准号:61221063) 教育部新世纪优秀人才支持计划(批准号:NCET-13-0458) 霍英东青年教师基金(批准号:141063) 中央高校基本科研业务费(批准号:2013jdgz11)资助项目
关键词 物理层安全 协作干扰 多节点协作 人工噪声 分组协作 physical layer security, cooperative jamming, cooperative communication, artificial noise, groupingcooperative
  • 相关文献

参考文献18

  • 1Bloch M, Barros J, Rodrigues M R D, et al. Wireless information-theoretic security. IEEE Trans Inf Theory, 2008, 54: 2515-2534.
  • 2Dong L, Han Z, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays. IEEE Trans Signal Process, 2010, 58: 1875-1888.
  • 3Wang H M, Yin Q Y, Xia X G. Distributed beamforming for physical-layer security of two-way relay networks. IEEE Trans Signal Process, 2012, 60: 3532-3545.
  • 4Zheng G, Choo L C, Wong K K. Optimal cooperative jamming to enhance physical layer security using relays. IEEE Trans Signal Process, 2011, 59: 1317-1322.
  • 5罗苗,王慧明,殷勤业.基于协作波束形成的中继阻塞混合无线物理层安全传输[J].中国科学:信息科学,2013,43(4):445-458. 被引量:9
  • 6Lai L, El Gamal H. The relay-eavesdropper channel: cooperation for secrecy. IEEE Trans Inf Theory, 2008, 54: 4005-4019.
  • 7Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355-1367.
  • 8Luo S, Li J, Petropulu A P. Uncoordinated cooperative jamming for secret communications. IEEE Trans Inf Foren Sec, 2013, 8: 1081-1090.
  • 9Dehghan M, Goeckel D L, Ghaderi M, et al. Energy efficiency of cooperative jamming strategies in secure wireless networks. IEEE Trans Wirel Commun, 2012, 11: 3025-3029.
  • 10Zhou X, McKay M R. Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Trans Veh Tech, 2010, 59: 3831-3842.

二级参考文献28

  • 1Xiao S, Gong W B, Towsley D. Secure wireless communication with dynamic secrets. In: Proceedings of INFOCOM, San Diego, 2010. 1-9.
  • 2Sayeed A, Perrig A. Secure wireless communications: Secret keys through multipath. In: IEEE International Conference on Speech and Signal Processing, Las Vegas, 2008. 3013-3016.
  • 3Parada P, Blahut R. Secrecy capacity of SIMO and slow fading channels. In: Proc IEEE Int Symp Inf Theory, Adelaide,2005. 2152-2155.
  • 4Li Z, Trappe W, Yates R. Secret communication via multi-antenna transmission. In: Proc 41st Conf Information Sciences Systems, Baltimore, 2007. 905-910.
  • 5Khisti A, Wornell G. Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans Inf Theory, 2010, 56: 3088-3104.
  • 6Sha ee S, Liu N, Ulukus S. Towards the secrecy capacity of the Gaussian MIMO wire-tap channel: The 2-2-1 channel. IEEE Trans Inf Theory, 2009, 55: 4033-4039.
  • 7Shannon C E. Communication theory of secrecy systems. Bell Syst Tech J, 1949, 28: 656-715.
  • 8Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355-1387.
  • 9Csiszar I, Korner J. Broadcast channels with con dential messages. IEEE Trans Inf Theory, 1978, 24: 339-348.
  • 10Cheong S L Y , Hellman M. The Gaussian wire-tap channel. IEEE Trans Inf Theory, 1978, 24: 451-456.

共引文献8

同被引文献38

  • 1Yang X B, Fapojuwo A O. Coverage probability analysis of heterogeneous cellular networks in rician/rayleigh fading environments. IEEE Commun Lett, 2015, 19:119-1200.
  • 2Zhang X N, Tan Z H, Xu S Y, et al. Utility maximization based on cross-layer design for multi-service in macro-femto heterogeneous networks. IEEE Trans Wirel Commun, 2013, 12:5607-5620.
  • 3Samdanis K, Taleb T, Schmid S. Traffic offioad enhancements for eUTRAN. IEEE Commun Surv Tut, 2012, 14: 884 -896.
  • 4Cao D, Zhou S, Niu Z. Improving the energy efficiency of two-tier heterogeneous cellular networks through partial spectrum reuse. IEEE Trans Wirel Commun, 2013, 12:4129-4141.
  • 5Liu J F, Zheng W, Li W, et al. Distributed uplink power control for two-tier femtocell networks via convex pricing. In: Proceedings of IEEE Wireless Communications and Networking Conference, Shanghai, 2013. 458-463.
  • 6Xia P, Liu C H, Andrews J G. Downlink coordinated multi-point with overhead modeling in heterogeneous cellular networks. IEEE Trans Wirel Commun, 2013, 12:4025-4038.
  • 7Panahi F H, Ohtsuki T. Analytical modeling of cognitive heterogeneous cellular networks over Nakagami=m fading. EURASIP J Wirel Commun Netw, 2015, 1:3628-3634.
  • 8Deng N, Zhou W Y, Haenggi M. Heterogeneous cellular network models with dependence. IEEE J Sel Area Commun, 2015, 33:2167-2181.
  • 9Mirahsan M, Schoenen R, Yanikomeroglu H. HetHetNets: heterogeneous traffic distribution in heteogeneous wireless cellular networks. IEEE J Sel Area Commun, 2015, 33:2252-2265.
  • 10Cao J, Ma M, Li H, et al. A survey on security aspects for LTE and LTE-A networks. IEEE Commun Surv Tut, 2014, 16:283-302.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部