摘要
The electronic structures and magnetic properties of(Mn, N)-codoped Zn O are investigated by using the firstprinciples calculations. In the ferromagnetic state, as N substitutes for the intermediate O atom of the nearest neighboring Mn ions, about 0.5 electron per Mn^2+ion transfers to the N^2-ion, which leads to the high-state Mn ions(close to +2.5)and trivalent N3-ions. In an antiferromagnetic state, one electron transfers to the N2-ion from the downspin Mn2+ion,while no electron transfer occurs for the upspin Mn^2+ion. The(Mn, N)-codoped Zn O system shows ferromagnetism,which is attributed to the hybridization between Mn 3d and N 2p orbitals.
The electronic structures and magnetic properties of(Mn, N)-codoped Zn O are investigated by using the firstprinciples calculations. In the ferromagnetic state, as N substitutes for the intermediate O atom of the nearest neighboring Mn ions, about 0.5 electron per Mn^2+ion transfers to the N^2-ion, which leads to the high-state Mn ions(close to +2.5)and trivalent N3-ions. In an antiferromagnetic state, one electron transfers to the N2-ion from the downspin Mn2+ion,while no electron transfer occurs for the upspin Mn^2+ion. The(Mn, N)-codoped Zn O system shows ferromagnetism,which is attributed to the hybridization between Mn 3d and N 2p orbitals.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.11304273,10764005,11164034,11072208,and 11032010)
the Yunnan Provincial Natural Science Foundation,China(Grant No.2010DC053)
the Scientific Research Foundation for Ph.D.Student of Yunnan Normal University