摘要
Zn1-xCdx O films are grown on c-sapphire substrates by laser molecular beam epitaxy(LMBE) at different temperatures. Their crystallographic structures, compositions, surface electronic structures are investigated. The a-axis lattice constant of Zn0.95Cd0.05 O is 3.20. Moreover, the epitaxial relationship shows a 30°-in-plane rotation of the film with respect to the c-sapphire substrate. When the substrate temperatures arrives at 500℃, the in situ reflection high-energy electron diffraction(RHEED) pattern of Zn Cd O film shows sharp streaky pattern. The maximum Cd content of Zn Cd O film grown at low substrate temperatures increases up to about 29.6 at.%, which is close to that of the ceramic target. In situ ultraviolet photoelectron spectroscopy(UPS) measurements demonstrate that Zn Cd O film exhibits intense peaks at 4.7 e V and 10.7 e V below the Fermi level, which are assigned to the O 2p and Zn 3p states. Energetic distance between Zn 3d and Cd 4d is 0.60 e V. Above 470 nm, the thin film shows excellent optical transmission.
Zn1-xCdx O films are grown on c-sapphire substrates by laser molecular beam epitaxy(LMBE) at different temperatures. Their crystallographic structures, compositions, surface electronic structures are investigated. The a-axis lattice constant of Zn0.95Cd0.05 O is 3.20. Moreover, the epitaxial relationship shows a 30°-in-plane rotation of the film with respect to the c-sapphire substrate. When the substrate temperatures arrives at 500℃, the in situ reflection high-energy electron diffraction(RHEED) pattern of Zn Cd O film shows sharp streaky pattern. The maximum Cd content of Zn Cd O film grown at low substrate temperatures increases up to about 29.6 at.%, which is close to that of the ceramic target. In situ ultraviolet photoelectron spectroscopy(UPS) measurements demonstrate that Zn Cd O film exhibits intense peaks at 4.7 e V and 10.7 e V below the Fermi level, which are assigned to the O 2p and Zn 3p states. Energetic distance between Zn 3d and Cd 4d is 0.60 e V. Above 470 nm, the thin film shows excellent optical transmission.
基金
Project supported by the Special Funds from the Ministry of National Science and Technology Major Instrumentation,China(Grant No.2011YQ130018)
the Open Foundation of Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology and Research Center of Laser Fusion,China Academy of Engineering Physics(Grant No.12zxjk06)
the National High Technology Research and Development Program of China(863 Program)