摘要
The thermodynamics and quantum phase transitions of two typically alternating double-chain systems are investigated by Green's function theory.(i) For the completely antiferromagnetic(AFM) alternating double-chain, the low-temperature antiferromagnetism with gapped behavior is observed, which is in accordance with the experimental result. In a magnetic field, we unveil the ground state phase diagram with zero plateau, 1/2 plateau, and polarized ferromagnetic(FM) phases,as a result of the intra-cluster spin-singlet competition. Furthermore, the Gr ¨uneisen ratio is an excellent tool to identify the quantum criticality and testify various quantum phases.(ii) For the antiferromagnetically coupled FM alternating chains,the 1/2 magnetization plateau and double-peak structure of specific heat appear, which are also observed experimentally.Nevertheless, the M–h curve shows an anomalous behavior in an ultra-low field, which is ascribed to the effectively weak Haldane-like state, demonstrated by the two-site entanglement entropy explicitly.
The thermodynamics and quantum phase transitions of two typically alternating double-chain systems are investigated by Green's function theory.(i) For the completely antiferromagnetic(AFM) alternating double-chain, the low-temperature antiferromagnetism with gapped behavior is observed, which is in accordance with the experimental result. In a magnetic field, we unveil the ground state phase diagram with zero plateau, 1/2 plateau, and polarized ferromagnetic(FM) phases,as a result of the intra-cluster spin-singlet competition. Furthermore, the Gr ¨uneisen ratio is an excellent tool to identify the quantum criticality and testify various quantum phases.(ii) For the antiferromagnetically coupled FM alternating chains,the 1/2 magnetization plateau and double-peak structure of specific heat appear, which are also observed experimentally.Nevertheless, the M–h curve shows an anomalous behavior in an ultra-low field, which is ascribed to the effectively weak Haldane-like state, demonstrated by the two-site entanglement entropy explicitly.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.11204157,11174179,and 11247020)
the Hubei Provincial Natural Science Foundation,China(Grant No.D20131307)
the China Three Gorges University Project(Grant No.KJ2011B068)