期刊文献+

An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism 被引量:1

An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism
下载PDF
导出
摘要 We report a facile method of synthesizing graphene quantum dots(GQDs) with tunable emission. The as-prepared GQDs each with a uniform lateral dimension of ca. 6 nm have fine solubility and high stability. The photoluminescence mechanism is further investigated based on the surfacestructure and the photoluminescence behaviors. Based on our discussion, the green fluorescence emission can be attributed to the oxygen functional groups, which could possess broad emission bands within the π –π * gap. This work is helpful to explain the vague fluorescent mechanism of GQDs, and the reported synthetic method is useful to prepare GQDs with controllable fluorescent colors. We report a facile method of synthesizing graphene quantum dots(GQDs) with tunable emission. The as-prepared GQDs each with a uniform lateral dimension of ca. 6 nm have fine solubility and high stability. The photoluminescence mechanism is further investigated based on the surfacestructure and the photoluminescence behaviors. Based on our discussion, the green fluorescence emission can be attributed to the oxygen functional groups, which could possess broad emission bands within the π –π * gap. This work is helpful to explain the vague fluorescent mechanism of GQDs, and the reported synthetic method is useful to prepare GQDs with controllable fluorescent colors.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期513-519,共7页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant Nos.2011CB932700 and 2011CB932703) the National Natural Science Foundation of China(Grant Nos.61335006,61378073,and 61077044) the Beijing Natural Science Foundation,China(Grant No.4132031)
关键词 graphene quantum dots tunable luminescence graphene quantum dots tunable luminescence
  • 相关文献

参考文献39

  • 1Geim A K and Novoselov K S 2007 Nat. Mater. 6 183.
  • 2Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666.
  • 3Li D, Mueller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotech. 3 101.
  • 4Choucair M, Thordarson P and Stride J A 2009 Nat. Nanotech. 4 30.
  • 5Nair R, Blake P, Gfigorenko A, Novoselov K, Booth T, Stauber T, Peres N and A Geim 2008 Science 320 1308.
  • 6Muszynski R, Seger B and Kamat P V 2008 J. Phys. Chem. C 112 5263.
  • 7Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater 6 652.
  • 8Wu H Q, Linghu C Y and Lti H M 2013 Chin. Phys. B 22 098106.
  • 9Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K and Geim A 2008 Science 320 356.
  • 10Zhuo S, Shao M and Lee S T 2012 ACS Nano 6 1059.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部