期刊文献+

基于容积粒子滤波的无人机FastSLAM算法研究 被引量:2

FastSLAM Algorithm Based on Cubature Particle Filtering Algorithm for UAV
下载PDF
导出
摘要 FastSLAM算法中粒子滤波存在粒子退化问题,严重影响了滤波的精度。为解决此问题,提出了基于容积粒子滤波的FastSLAM算法。将容积卡尔曼滤波作为粒子滤波的重要性密度函数,获得所需要的加权粒子,进而通过计算粒子均值,获得系统状态的最小均方误差估计,能够很好地逼近系统状态后验概率,抑制粒子退化问题。在无人机应用环境下对该算法进行仿真验证,结果表明该算法在SLAM的估计精度和一致性方面都显示出较好的性能。 In FastSLAM,particle filter may induce particles degeneration,and affect the filtering precision.FastSLAM based on cubature particle filtering algorithm is proposed to solve this problem. The CPF uses the cubature Kalman filtering as the importance probability function to obtain the required particles with weights. By calculating the mean,then the minimum square error state estimation is obtained. This algorithm can approach the system posterior probability and restrain the particle degeneration. Simulation research is carried out by proposed algorithm on uninhabited aerial vehicle(UAV). Result shows that this method can get better performance in estimation accuracy and consistency.
出处 《系统仿真技术》 2014年第3期234-238,共5页 System Simulation Technology
关键词 无人机 FASTSLAM 粒子滤波 容积卡尔曼滤波 uninhabited aerial vehicle fast simultaneous location and mapping particle filtering cubature Kalman filtering
  • 相关文献

参考文献3

二级参考文献27

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2[1]Jensfelt P, Cgrustebseb H. Laser based position acpuisition and tracking in an indoor environment[A]. Proceedings of IEEE International Symposium on Robotics and Automation[C]. Mexico: 1998,l. 331-338.
  • 3[2]Davison A J, Nobuyuki K. 3D simultaneous localization and map building using active vision for a robot moving on undulating terrain[A]. Proceedings of the IEEE International Conference on Computer Vision and Recognization[C]. Hawail: 2001,1. 384-391 .
  • 4[3]Se S, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Korea: 2001. 2051-2058.
  • 5[4]Leonard J, Durrant-Whyte H F. Dynamic map building for an autonomous mobile robot[J]. International Journal of Robotics Research, 1992, 11(4): 286-298.
  • 6[5]Moutarlier P, Chatila R. Stochastic multisensory data fusion for mobile robot localization and environmental modeling[A]. Proceedings of the International Symposium on Robotics Research[C]. 1990. 85-94.
  • 7[6]Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem[A]. Proceedings of the Eighteenth National Conference on Artificial Intelligence[C]. Edmonton: AAAI Press, 2002. 593-598.
  • 8[7]Hu S, Hu D D, Gu O. Landmark-based navigation of mobile robots in manufacturing[A]. IEEE International Conference on Emerging Technologies & Factory Automatin[C]. Spain: 1999. 18-21.
  • 9[8]Leonard J, Durrant-White H F. Directed Sonar Sensing for Mobile Robot Navigation[M]. Boston: Kluwer Academic Publishers, 1992. 208-216.
  • 10[9]Thrun S. Particle filters in robotics[A]. Proceedings of Uncertainty in AI (UAI- 2002)[C]. San Francisco: Morgan Kaufmann Publishers, 2002.511-518.

共引文献358

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部