期刊文献+

基于负载均衡的MapReduce后备任务上限自适应算法 被引量:3

Upper limit value of backup task self-adaptive algorithm of MapReduce based on load balance
下载PDF
导出
摘要 已有算法采用固定后备任务上限,不能动态适应负载水平变化。针对该问题,提出了基于负载均衡的MapReduce后备任务上限自适应算法。通过计算空闲节点强度和网络带宽分析系统负载水平,不断调整后备任务上限,精确控制后备任务数量,避免因过多空闲节点空载导致资源浪费或过度执行后备任务导致网络拥塞。实验表明,该算法能有效感知系统负载水平,对后备任务数量作出合理调整,并且比原算法在负载均衡和作业响应时间上有明显的提升。 Current algorithms fixed the upper limit value of backup task, it can not dynamically adapt to change in load level. To solve this problem, this paper proposed a upper limit value of backup task self-adaptive algorithms based on the load bal- ance. The algorithm constantly changed the backup task numbers to control the number of backup tasks precisely by calculating idle TaskTracker intensity and network bandwidth, this could avoid the resources waste which caused by much idle TaskTrack- er or the congestion which caused by the excessive execution of backup task. Experimental results show that the algorithm can aware system load levels effectively, adjust the number of backup tasks legitimately, and the load balance and response time of the job has improved significantly than the original algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2015年第1期67-70,共4页 Application Research of Computers
基金 国家教育部新世纪优秀人才支持计划资助项目(NCET-11-0942)
关键词 MAPREDUCE 后备任务上限 自适应算法 负载水平 空闲节点强度 网络带宽 MapReduce upper limit value of backup task adaptive algorithm load balance idle TaskTracker intensity network bandwidth
  • 相关文献

参考文献11

  • 1潘巍,李战怀,伍赛,陈群.基于消息传递机制的MapReduce图算法研究[J].计算机学报,2011,34(10):1768-1784. 被引量:45
  • 2郑启龙,房明,汪胜,王向前,吴晓伟,王昊.基于MapReduce模型的并行科学计算[J].微电子学与计算机,2009,26(8):13-17. 被引量:39
  • 3DEAN J, CHEMAWAT S. MapReduce: simplified data processing on large clusterd[ C ]//Proc of ther 6th Symposium on Operating System Design and Implementation. Berkeley : USENIX Association, 2004 : 137-150.
  • 4NIGHTINGALE E B, CHEN P M, FLINN J. Speculative execution in a distributed file system[ C ]//Proc of the 20th ACM Symposium on Op- erating Systems Principles. 2005 : 191-205.
  • 5陈艳金.MapReduce模型在Hadoop平台下实现作业调度算法的研究和改进[D].广州:华南理工大学,2011:1-3.
  • 6赵春燕.云环境下作业调度算法研究与实现[M].北京:北京交通大学出版社,2009:2058.
  • 7陈全,邓倩妮.异构环境下自适应的Map-Reduce调度[J].计算机工程与科学,2009,31(A01):168-171. 被引量:21
  • 8金嘉晖,罗军舟,宋爱波,东方.基于数据中心负载分析的自适应延迟调度算法[J].通信学报,2011,32(7):47-56. 被引量:16
  • 9Hadoop on demand [ EB/OL ]. 2011. http ://hadoop. apache, org/ common/docs/r0.18.3/hod, html.
  • 10Yahoo, Yahoo! Hadoop tutorial[ EB/OL]. 2009. http://public, ya- hoo. com/gogate/hadoop-tutorial/start- tutorial, html.

二级参考文献59

  • 1郭成城,晏蒲柳.一种异构Web服务器集群动态负载均衡算法[J].计算机学报,2005,28(2):179-184. 被引量:72
  • 2Vaquero L M, Rodero-Merino L, Caceres J, et al. A Break in the Clouds: Towards a Cloud DefinitionD]. ACM SIGCOMM Computer Communication Review, 2009, 39 ( 1 ) : 50- 55.
  • 3Bryant R E. Data-Intensive Supercomputing: the Case for DISC[R]. CMU Technical Report CMU-CS-07-128, Department of Computer Science, Carnegie Mellon University, 2007.
  • 4Dean J, Ghemawat S. MapReduce: Simplied Data Processing on Large Clusters[C]//Proc of OSDI '04,2004 : 137-150.
  • 5Colbyranger, Raghuraman R, Penmetsa A. Evaluating MapReduce for Multi-Core and Multiprocessor Systems[C]//Proc of the IEEE 13th Int'l Syrup on High Performance Computer Architecture, 2007 : 13-24.
  • 6Kruijf M D, Sankaralingam K. MapReduce for the Cell B. E. Architecture[-R]. Technical Report CS-TR-2007-1625, University of Wisconsin Computer Sciences University of Wisconsin, 2007.
  • 7He B S, Fang W B, Luo Q, et al. Mars: A MapReduce Framework on Graphics Processors[C]//Proc of the 17th Int'l Conf on Parallel Architectures and Compilation Techniques, 2008 : 260-269.
  • 8Apache Hadoop. Hadoop [EB/OL]. [2009-03-06]. http://hadoop, apache, org/.
  • 9Yahoo. Yahoo! Hadoop Tutorial [EB/OL]. [2009-02-27]. http:// public, yahoo, com/gogate/hadoop-tutorial/start-tutorial, html.
  • 10Ghemawat S, Gogioff H, Leung P T. The Google File System[C]//Proc of the 19th ACM Syrnp on Operating Systems Principles, 2003 : 29-43.

共引文献161

同被引文献14

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部