期刊文献+

典型赤铁矿磨矿过程智能运行反馈控制 被引量:10

Intelligent operational feedback control for typical hematite grinding processes
下载PDF
导出
摘要 冶金磨矿是典型的高能耗、低效率过程,其控制与优化不仅仅是使常规过程控制系统尽可能好地跟踪期望设定值,而且要控制整个过程运行,实现表征磨矿整体运行性能的磨矿粒度与生产效率等运行指标的优化.针对我国广泛使用的赤铁矿两阶段全闭路磨矿,由于其原矿石性质与成份复杂且不稳定、粒级波动大,磨矿运行指标不能在线测量,工况时变,难以建立过程数学模型,提出基于数据与知识的智能运行反馈控制方法,包括基于案例推理的控制回路预设定、磨矿粒度动态神经网络软测量以及多变量模糊动态调节器.为了验证所提方法的有效性,将所题方法应用于中国某大型赤铁矿选厂,取得显著应用成效. Metallurgical grinding is a typical process of high energy consumption and low efficiency; its control andoptimization will make the outputs of the controlled processes best follow their setpoints, and optimize the entire plant sothat the grinding particle size and efficiency during the production phase being maintained within their desired ranges. Forthe complex hematite grinding processes which are widely used in China, the processed hematite has complex compositionand properties, and the operational indices cannot be measured online. Moreover, their dynamic characteristics are veryintricate, making the accurate dynamic models of them are difficult to be built. An intelligent operational feedback controlapproach is proposed which is based on data and knowledge. This approach includes a case-based reasoning loop pre-setting controller, an artificial neural network (ANN)-based particle size soft sensor module, and a multivariable fuzzydynamic adjustor. The proposed method has been successfully applied to the grinding process of a large hematite mineralprocessing plant in China.
作者 周平 柴天佑
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第10期1352-1359,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(61104084 61333007 61290323 614730646) 中央高校基本科研业务费资助项目(130508002 130108001) 流程工业综合自动化国家重点实验室基础科研业务费资助项目(2013ZCX02-09)
关键词 运行反馈控制 磨矿过程 数据驱动 案例推理 模糊逻辑 operational feedback control grinding process data-driven case-based reasoning fuzzy logic
  • 相关文献

参考文献18

  • 1ZHOU P,CHAI T Y,SUN J.Intelligence-based supervisory control for optimal operation of a DCS-controlled grinding system[J].IEEE Transactions on Control Systems Technology,2013,21 (1):162-175.
  • 2ZHOU P,CHAI T Y,WANG H.Intelligent optimal-setting control for grinding circuits of mineral processing process[J].IEEE Transactions on Automation Science and Engineering,2009,6(4):730-743.
  • 3HOUSEMAN L A,SCHUBERT J H,HART J R,et al.PlantStar 2000:a plant-wide control platform for minerals processing[J].Minerals Engineering,2001,14(6):593-600.
  • 4ZHOU P,CHAI T Y.Grinding circuit control:A hierarchical approach using extended 2-DOF decoupling and model approximation[J].Powder Technology,2011,213(1/3):14-26.
  • 5POMERLEAU A,HODOUIN D,DESBIENS A,et al.A survey of grinding circuit control methods:From decentralized PID controllers to multivariable predictive controller[J].Powder Technology,2000,108(2/3):103-115.
  • 6HODOUIN D.Methods for automatic control,observation,and optimization in mineral processing plants[J].Journal of Process Control,2011,21(2):211 225.
  • 7RAMASAMV M,NARAYANAN S S,RAO C D P.Control of ball mill grinding circuit using model predictive control scheme[J].Journal of Process Control 2005,15(3):273-283.
  • 8周平,柴天佑.多变量解耦控制的工业过程运行层次控制方法[J].控制理论与应用,2011,28(2):199-205. 被引量:9
  • 9DURATE M,SEPULVEDA F,REDARD J P,et al.Grinding operation optimization of the CODELCO-Andina concentrator plant[J] Minerals Engineering,1998,11(12):1119-1142.
  • 10RADHAKRISHNAN V R.Model based supervisory control of a ball mill grinding circuit[J].Journal of Process Control,1999,9(3):195-211.

二级参考文献17

  • 1] SEBASTIAN E. Feedback control for optimal process operation[J]. Journal of Process Control, 2007, 17(3): 203 - 219.
  • 2CHAI T Y, LIU J X, DING J L, et al. Hybrid intelligent control for hematite high intensity magnetic separating process[J]. Measurement and Control, 2007, 29(40): 171 - 175.
  • 3ZHOU E CHAI T Y, WANG H. Intelligent optimal-setting control for grinding circuits of mineral processing process[J]. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730 - 743.
  • 4WANG Z J, WU Q D, CHAI T Y. Optimal-setting control for complicated industrial processes and its application study[J]. Control Engineering Practice, 2004, 12(1): 65 - 74.
  • 5LI H X, GUAN S P. Hybrid intelligent control strategy-supervising a DCS-controlled batch process[J]. IEEE Control Systems Magazine, 2001, 21(3): 36 -48.
  • 6ZANIN A C, TVRZSKA D G M, ODLOAK D. Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit[J]. Journal of Chemical Engineering, 2000, 24(2/7): 525 - 531.
  • 7SKOGESTAD S. Plantwide control: the search for the selfoptimizing control structure[J]. Journal of Process Control, 2000, 10(5) :487 - 507.
  • 8WANG Q G, ZHANG Y, CHIU M S. Non-interacting control design for multivariable industrial processes[J]. Journal of Process Control, 2003, 13(3): 253 - 265.
  • 9LIU T, ZHANG W D, GAO F R. Analytical decoupling strategy using a unity feedback control structure for MIMO processes with time delays[J]. Journal of Process Control, 2007, 17(2): 173 - 186.
  • 10WANG Q G, ZHANG Y, CHIU M S. Decoupling internal model control for multivariable systems with multiple time delays[J]. Chemical Engineering Science, 2002, 57(1): 115 - 124.

共引文献8

同被引文献80

引证文献10

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部