期刊文献+

一类SIRS传染病模型的新Lyapunov函数

New Lyapunov Functions for a Class of SIRS Epidemic Models
下载PDF
导出
摘要 通过建立新的Lyapunov函数研究了两类SIRS传染病动力学模型,得到了两类模型的地方病平衡点的全局渐近稳定性.所得结果分别改进了文献[1,2]中的相关结论. In this paper, we investigate two classes of SIRS epidemic models with varying population size. By constructing new Lyapunov functions, the global asymptotic stability of the endemic equilibrium for these epidemic models is obtained. The results improve the relevant conclusions in [1,2].
作者 汤倩 滕志东
出处 《新疆大学学报(自然科学版)》 CAS 2014年第4期398-403,共6页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金(11271312)
关键词 SIRS传染病模型 地方病平衡点 全局渐近稳定性 LYAPUNOV函数 SIRS epidemic model endemic equilibrium global stability Lyapunov function
  • 相关文献

参考文献1

二级参考文献8

  • 1Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 2Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 3Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 4Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 5Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 6Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.
  • 7LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976.
  • 8Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [ J]. Canad J Math, 1977,29(2) :315-326.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部