期刊文献+

关于非交换Orlicz空间的对角子代数(英文)

Characterization of Subdiagonal Algebras on Noncommutative Orlicz Spaces
下载PDF
导出
摘要 设Φ是增长函数,M是正规有限忠实迹的von Neumann代数,A是M的一个迹子代数.首先证明了条件期望E的收缩性,其次证明了A有LΦ-分解当且仅当A是对角子代数.另外还给出了对角子代数的一些特征. LetΦbe a growth function, M be finite von Neumann algebra with a faithful normal tracial stateτand A be a tracial subalgebra of M. We proved contractivity of conditional expectation E and A has LΦ-factorization if and only if A is a subdiagonal algebra. We also gave some characterizations of subdiagonal algebras.
出处 《新疆大学学报(自然科学版)》 CAS 2014年第4期411-414,共4页 Journal of Xinjiang University(Natural Science Edition)
基金 Partially supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
关键词 迹子代数 对角子代数 环增函数 L2-稠密型 LΦ-分解 tracial subalgebra subdiagonal algebra growth function L2-density LΦ-factorization
  • 相关文献

参考文献13

  • 1Arveson W B. Analyticity in operator algebras[J]. Amer J Math, 1967, 89:578-642.
  • 2Bekjan T N, Xu Q. Riesz and Szeg6 type factorizations for noncommutative Hardy spaces[J]. J Oper Theory, 2009, 62(1): 215 - 231.
  • 3Abdurexit A, Bekjan T. Noncommutative Orlicz-Hardy spaces associated with growth functions[J]. J Math Anal Appl, 2014,420:824-834.
  • 4阿布都艾尼.阿不都热西提,吐尔德别克.NONCOMMUTATIVE ORLICZ-HARDY SPACES[J].Acta Mathematica Scientia,2014,34(5):1584-1592. 被引量:2
  • 5Blecher D P, Labuschagne L E. Characterizations of noncommutative H"J]. Integr Equ Oper Theory, 2006, 56:301-321.
  • 6Marsalli M. Noncommutative H2-spaces[J]. Pro Amer Math Soc, 1997, 125:779-784.
  • 7Marsalli M, West G. Noncommutative HP-spaces[J]. J Operator Theory, 1997, 40:339-355.
  • 8Ji G,Saito K S. Factorization in Sundiagonal Algebras[J]. J Funct Anal, 1998, 159:191-202.
  • 9Blecher D P, Labuschagne L E. A Beurling theorem for noncommutative Lp spaces[J]. J Oper Theory, 2008, 59:29-51.
  • 10Saito K S. A note on invariant subspaces for maximal subdiagonal algebras[J]. Proc Amer Math Soc, 1979, 77:349-352.

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部