期刊文献+

弱KAM理论和Hamilton-Jacobi方程 被引量:1

Weak KAM theory and Hamilton-Jacobi equations
原文传递
导出
摘要 Mather理论研究了在高维正定Lagrangian系统里各类作用量极小集的存在性以及适当条件下,这些作用量极小集之间的连接轨道的存在性,其中关于连接轨道的工作在Arnold扩散的研究中起着重要的作用.Fathi A.创立的弱KAM理论通过研究作用量极小曲线的动力学行为,在Mather理论及传统研究Hamilton-Jacobi所采用的PDE方法中建立起了桥梁.但由于在弱KAM理论中起核心作用的Lax-Oleinik半群在时间周期系统中的非收敛性,使得弱KAM理论的前期工作集中于自治系统.通过新型Lax-Oleinik算子的引入,使得在时间周期Lagrange系统建立弱KAM理论成为可能,也使得我们可能将弱KAM理论推广至更一般的Hamilton-Jacobi方程.本文我们介绍弱KAM理论以及有关这方面研究的最新进展. Mather theory studies the existence of various kinds of the action minimizing sets and the connecting orbits between these sets in higher-dimensional positive Lagrangian system. The work about the connecting orbits plays an important role in the study of Arnold diffusion. By studying the dynamical behavior of the action-minimizing curves for Tonelli Lagrangian systems, weak KAM theory founded by A. Fathi bridges Mather theory and the PDE methods concerning the associated Hamilton-Jacobi equation. However, because the convergence of the Lax-Oleinik semigroup which is critical in KAM theory does not hold in time-periodic Lagrangian system, the preliminary work about weak KAM theory focused on autonomous system. By introducing a new kind of Lax-Oleinik type operator, it is possible for us to build weak KAM theory in the time-periodic Lagrangian system and generalize the theory to more general Hamilton-Jacobi equation. In this paper, we introduce the basic knowledge of weak KAM theory and its latest development.
作者 李霞 严军
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2014年第12期1286-1290,共5页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家重点基础研究发展计划(编号:2013CB834100) 国家自然科学基金(批准号:11001193) 江苏省自然科学基金(编号:BK2011313)资助项目
关键词 弱KAM理论 Mather理论 HAMILTON-JACOBI方程 weak KAM theory, mather theory, Hamilton-Jacobi equation
  • 相关文献

参考文献18

  • 1Lions P, Generalized Solutions of Hamilton-Jacobi Equations, Reasearch Notes in Mathematics. London: Pitman Publishing, 1982.
  • 2Crandall M G, Lions P. Viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc, 1983, 277(1): 142.
  • 3Crandall M G, Evans L C, Lions P. Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc, 1984, 282(2):487-502.
  • 4Arnol'd V I. Instability of dynamical systems with several degrees of freedom(Russian, English). Sov Math Dokl, 1964, 5: 581-585.
  • 5Mather J. Action minimizing invariant measures for positive definite Lagrangian systems. Math Z, 1991, 207(2): 169-207.
  • 6Mather J. Variational construction of connecting orbits. Ann Inst Fourier (Grenoble), 1993, 43(5): 1349-1386.
  • 7Mather J. Differentiablity of the minimal average action as a function of the rotation number. Bol Soc Bras Mat, 1990, 21: 59-70.
  • 8Cheng C Q, Yan J. Existence of diffusion orbits in a priori unstable Hamiltonian systems. J Differential Geometry, 2004, 67: 457-517.
  • 9Cheng C Q, Yan J. Arnold diffusion in Hamiltonian systems: A priori unstable case. J Differential Geometry, 2009, 82: 229-277.
  • 10Fathi A. Théoréme KAM faible et théorie de Mather sur les systémes lagrangiens. C R Acad Sci Paris Ser I Math, 1997, 324: 1043-1046.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部