期刊文献+

求解非线性互补问题的非单调共轭梯度法

AN ON-MONOTONE-STEP CONJUGATE GRADIENT ALGORITHM FOR SOLVING NCP
下载PDF
导出
摘要 利用非线性互补问题(NCP)的F-B价值函数,基于PRP+型共轭梯度算法,结合Gu N.Z.的新的非单调搜索技术提出新的利用F-B价值函数求解非线性互补问题(NCP)的非单调共轭梯度算法,该算法保持了共轭梯度算法和非单调数据的优良性质.在适当的条件下,证明了算法的全局收敛性,数值实验证明是有效的,适合解决大规模非线性互补问题. Nonlinear complementarity problem can be reformulated as an unconstrained optimization problem by using F-B merit function.Based on PRP+type conjugate gradient method,by combining with Gu N.Z.non-monotone-step line search technique,we propose a new non-monotone-step conjugate gradient algorithm for solving nonlinear complementarity problem via F -B merit function.The new algorithm has excellent?quality of keeping?conjugate gradient method and non -monotone -step line search technique.Under some reasonable conditions,it is proved that the algorithm is globally convergent.Numerical experiments show that the new algorithm is effective,suitable to solve large scale nonlinear complementarity problems.
作者 侯春莉
出处 《山东师范大学学报(自然科学版)》 CAS 2014年第4期35-40,共6页 Journal of Shandong Normal University(Natural Science)
关键词 互补问题 价值函数 共轭梯度法 非单调 complementarity problem merit function conjugate gradient method non-monotone
  • 相关文献

参考文献8

  • 1Harker P T, Pang J S. Finite - dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications[ J]. Mathematical Programming, 1990, 48 : 161 - 220.
  • 2Mangasarian 0 L. Equivelence of the complementarity problem to a system of nonlinear equations[ J ]. SIAM Journal on Applied Mathematics, 1976, 31:89 -92.
  • 3乌彩英,陈国庆.大规模非线性互补问题的共轭梯度法[J].数学的实践与认识,2012,24(3):185-193. 被引量:2
  • 4Fischer A. A special newton -type optimization method[ J]. Optimization, 1992, (24) :269 -284.
  • 5Deluca T, Facchinei F, Kanzow C. A semismooth equation approach to the solution of nonlinear complementarity problems [ J ]. Mathmatical Programming, 1996, 75:407 -439.
  • 6Chen C,Mangasarian O L. A class of smoothing functions for nonlinear and mixed complementarity problems[J]. Computational Optimization and Applications, 1996, 5:97 - 138.
  • 7Gu N Z, Mo J T. Incorporating nonmonotone strategies into the trust region method for unconstrained optimization [ J l, Computers & Mathematics with Applications, 2008, 55(9) :2158 -2172.
  • 8王忠英,王征宇,沈祖和.解一类线性互补问题的区间方法[J].高等学校计算数学学报,2006,28(2):185-192. 被引量:9

二级参考文献14

  • 1何尚录,徐成贤.Infeasible-interior-point algorithm for a class of nonmonotone complementarity problems and its computational complexity[J].Science China Mathematics,2001,44(3):338-344. 被引量:2
  • 2Alefeld G, Chen X Potra F. Validation of solution to linear complementarity problems. Numer.Math., 1999, 83:1-23
  • 3Alefeld G, Wang Z Y Shen Z H. Enclosing solution of linear complementarity problems for H-matrices. Relialle Computing, 2004, 10:423-435
  • 4Baumann E. Optimal centered froms. Freiburger Intervall-Berichte, 87/3, 5-21
  • 5Bierlein J C. The journal bearing. Scientific American, 1975, 233:50-64
  • 6Cottle R W. Nonlinear programs with positively bounded Jacobians, J. SIAm. Appl. Math.,1966, 14:147-158
  • 7Cottle R W. Monotone solutions of the parametric linear complementarity problems. Math.Prog., 1972, 3:210-224
  • 8Cryer C W. The method of christopherson for solving free boundary problems for infinite journal bearings by means of finite differences. Math. Comput., 1971, 25:435-443
  • 9Ferris M C, Pang J S. Engineering and economic applications of complementarity problems.SIAM. Rev., 1997, 39:669-713
  • 10Lemke C E. On complementary pivot theory. Mathematics of the Discision Sciences, Part Ⅰ.(J. B. Rosen, O. L. Mangasarian and RItter eds) Academic Press, New York, 1970

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部