期刊文献+

超分子凝胶性质与溶剂参数关系的研究进展 被引量:5

Research Progress in the Correlation between Gelation Properties and Solvent Parameters
下载PDF
导出
摘要 为了能有效地开发功能性凝胶,人们对超分子凝胶机理做了大量研究.但目前的研究还局限于凝胶因子结构和外界环境等影响因素,而有关溶剂对超分子凝胶体系的影响规律还不十分清楚.本文将结合最新研究进展详细地讨论凝胶性质(如凝胶-溶胶转变温度(Tgel)、临界凝胶浓度(CGC)、凝胶流变学性质等)与溶剂参数(如ε、ET(30)、χ、δ、δd、δp、δh等)的关系,揭示溶剂影响凝胶性质的规律;在此基础上,进一步介绍了超分子凝胶行为预测模型:一维模型、Teas图模型和Hansen空间模型,并讨论了各模型的优缺点,以期为新型超分子凝胶体系的设计提供参考. To enable the effective development of functional gels, much effort has been dedicated to elucidating the mechanism of gelation. However, most existing studies have considered only the influence of the chemical structure of the gelators and/or external environmental factors;the contribution of the solvent in the gelation procedure is not yet understood. In this review, to reveal the solvent effects, the relationship between the gelation properties (such as the gel-sol phase transition temperature (Tgel), the critical gelation concentration (CGC), and the gelation behaviors) and the solvent parameters (ε, ET(30),χ,δ,δd,δp,δh) is systematical y discussed, based on recent research progress. Moreover, some experimental models for predicting the solvent effects (such as the one-dimensional model, Teas plot model, and Hansen space models) are introduced and discussed;these models could provide a guide for the development of new supramolecular gel systems.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第12期2197-2209,共13页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51103057 51073071) 中国博士后科学基金(2012T50294)资助项目~~
关键词 超分子凝胶 凝胶行为 溶剂效应 溶剂参数 Hansen溶度参数 Supramolecular gel Gelation behavior Solvent effect Solvent parameter Hansen solubility parameter
  • 相关文献

参考文献78

  • 1Terech, E; Weiss, R. G. Chem. Rev. 1997, 97 (8), 3133. doi 10.1021/cr9700282.
  • 2Abdallah, D. J.; Weiss, R. G.Adv. Mater. 2000, 12 (17), 1237.
  • 3Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34 (10), 821. doi: 10.1039/b417081b.
  • 4Dastidar, P. Chem. Soc. Rev. 2008, 37 (12), 2699. doi: 10.1039/ bS07346e.
  • 5Terech, E; Weiss, R. G. Molecular Gels: Materials with Self- Assembled Fibrillar Networks; Springer: Dordrecht, 2006.
  • 6Sabadini, E.; Francisco, K. R.; Bouteiller, L. Langmuir 2010, 26 (3), 1482. doi: 10.1021/la903683e.
  • 7Cravotto, G.; Cintas, E Chem. Soc. Rev. 2009, 38 (9), 2684. doi: 10.1039/b901840a.
  • 8Maeda, H. Chem. -Eur J. 2008, 14 (36), 11274. doi: 10.1002/ chem.200801333.
  • 9Kawano, S. I.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc. 2004, 126 (28), 8592. doi: 10.1021/ja048943+.
  • 10Yagai, S.; Nakajima, "17.; Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A.. Am. Chem. Soe. 2005, 127 (31), 11134. doi: 10.1021/ja052645a.

二级参考文献27

  • 1Armand, M.; Tarascon, J. Nature 2008, 451,652. doi: 10.1038/ 451652a.
  • 2Quartarone, E.; Mustarelli, E Chem. Soc. Rev. 2011, 40, 2525. doi: 10.1039/c0cs0008 lg.
  • 3Tobishima, S.; Morimoto, H.; Aoki, M.; Saito, Y.; Inose, T.; Fukumoto, T.; Kuryu, T. Electrochim. Acta 2004, 49, 979. doi: 10.1016/j.electacta.2003.10.009.
  • 4Kang, Y.; Kim, H. J.; Kim, E.; Oh, B.; Cho, J. H. ,- Power Sources 2001, 92, 255. doi: 10.1016/S0378-7753(00)00546-2.
  • 5Shin, J. H.; Jung, S. S.; Kim, K. W.; Ahn, H. J. J. Mater. Sci-Mater El. 2002, 12, 727.
  • 6Kang, -.; Lee, J.; Suh, D. H.; Lee, C. J. Power Sources 2005, 146, 391. doi: lO.lO16/j.jpowsour.2005.03.142.
  • 7Kang, Y.; Lee, J. Y.; Lee, J. I.; Lee, C. J. Power Sources 2007, 165, 92. doi: 10.1016/j.jpowsour.2006.11.019.
  • 8Ueno, M.; Imanishi, N.; Hanai, K.; Kobayashi, T.; Hirano, A.; Yamamoto, 04 Takeda, Y. J. Power Sources 2011, 196, 4756. doi: 10.1016/j.jpowsour.2011.01.054.
  • 9Jannasch, E Polymer 2002, 43, 6449. doi: 10.1016/S0032-3861 (02)00585-2.
  • 10Jannasch, E Chem. Mater 2002, 14, 2718. doi: 10.1021/ cm021103e.

共引文献14

同被引文献166

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部