期刊文献+

嵌段共聚物相容剂对聚合物共混体系力学性能影响的连续介观模拟 被引量:3

Sequential Mesoscale Approach for Determining the Effects of the Addition of a Block Copolymer Compatibilizer on the Mechanical Properties of Polymer Blends
下载PDF
导出
摘要 结合介观动力学方法和三维弹簧格子模型,研究了嵌段共聚物相容剂对相容性较差的聚合物二元共混体系力学性能的影响.在适当范围内不断增加嵌段共聚物相容剂的用量,研究了相容剂含量对体系杨氏模数及拉伸强度的影响,同时也对不同体系材料的破碎位点进行了分析.结果表明,未加入相容剂的二元共混体系在拉伸模拟中表现出较低的拉伸强度,而适量添加相容剂可以显著提升材料的拉伸强度,随着相容剂含量的增加,共混体系的破碎位点会发生转移并最终改善材料的整体性能.而相容剂的加入对体系杨氏模数的影响较小.该连续模拟方法为关联聚合物复合体系的微观结构和宏观力学性能提供了一条高效的途径. The compatibilizing effects of the addition of a block copolymer on the mechanical properties of immiscible polymer blends were studied using a combined simulation method;this method used MesoDyn to determine the morphology and a probabilistic lattice spring model (LSM) to determine the mechanical properties. The mechanical properties, including the Young's modulus, tensile strength, and fracture position, were analyzed as a function of the concentration of the additive. The simulation results showed that the polymer blends without any compatibilizer had poor mechanical properties, compared with the original components, primarily because of the lack of stress transfer across the sharp interface. The tensile strength increased dramatical y with the addition of the compatibilizer. The fracture position moved from the interface further into the matrix with increases in the volume fraction of the compatibilizer, leading to the enhancement of the tensile strength. The Young's modulus varied slightly with increases in the concentration of the additive. These studies provide an efficient path for the correlation of the complex morphologies of polymer blends with their mechanical response.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第12期2241-2248,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(91334203 21476071 51103044) 中央高校基本科研业务费资助项目~~
关键词 介观动力学 相容剂 弹簧格子模型 拉伸强度 破碎 MesoDyn Compatibilizer Lattice spring model Tensile strength Fracture
  • 相关文献

参考文献31

  • 1张运湘,宋义虎,郑强.相分离对聚偏氟乙烯/聚甲基丙烯酸甲酯共混物的力学与耐紫外老化性能的影响[J].高分子学报,2012,22(12):1364-1370. 被引量:2
  • 2Dai, S.; Ye, L.; Hu, G. H. Journal of Applied Polymer Science 2012, 126 (3), 1165. doi: 10.1002/app.v126.3.
  • 3Cao, Y.; Zhang, J.; Feng, J.; Wu, P.ACSNano 2011, 5 (7), 5920. doi: 10.1021/nn201717a.
  • 4Gao, C.; Zhang, S.; Li, X.; Zhu, S.; Jiang, Z. Polymer 2014, 55 (1), 119. doi: 10.1016/j.polymer.2013.11.022.
  • 5Wu, D.; Zhang, Y.; Yuan, L.; Zhang, M.; Zhou, W. Journal of Polymer Science Part B: Polymer Physics 2010, 48 (7), 756. doi: 10.1002/polb.v48:7.
  • 6Eastwood, E.; Dadmun, M. Macromolecules 2002, 35 (13), 5069. doi: 10.1021/ma011701z.
  • 7Fredrickson, G. H.; Ganesan, V.; Drolet, E Macromolecules 2002, 35 (1), 16. doi: 10.1021/ma011515t.
  • 8陈学琴,徐峰,邱枫,杨玉良.嵌段共聚物薄膜中条纹形态的螺旋结构[J].化学学报,2006,64(7):698-700. 被引量:2
  • 9Malik, R.; Hall, C. K.; Genzer, J. SoftMatter 2011, 7 (22), 10620. doi: 10.1039/c I sm06292a.
  • 10Ko, M.; Kim, S.; Jo, W. Polymer2000, 41 (16), 6387. doi: 10.1016/S0032-3861 (99)00855-1.

二级参考文献44

  • 1吴清鹤,谭寿再,吴健文,余莉娇.PA6/PP合金的研制[J].工程塑料应用,2007,35(6):12-15. 被引量:15
  • 2Horvat,A.; Lyakhova,K.S.; Sevink,G.J.A.; Zvelindovsky,A.V.; Magerle,R.J.Chem.Phys.2004,120,1117.
  • 3Kim,S.O.; Solak,H.H.; Stoykovich,M.P.; Ferrier,N.J.;de Pablo,J.J.; Nealey,P.F.Nature 2003,424,411.
  • 4Leibler,L.Macromolecules 1980,13,1602.
  • 5Matsen,M.W.J.Chem.Phys.2000,113,5539.
  • 6Knoll,A.; Horvat,A.; Lyakhova,K.S.; Krausch,G.;Sevink,G.J.A.; Zvelindovsky,A.V.; Magerle,R.Phys.Rev.Lett.2002,89,035501.
  • 7Niu,S.-J.; Saraf,R.F.Macromolecules 2003,36,2428.
  • 8Xuan,Y.; Peng,J.; Cui,L.; Wang,H.-F.; Li,B.-Y.; Han,Y.-C.Macromolecules 2004,37,7301.
  • 9Shiwa,Y.Phys.Rev.E 2000,61,2924.
  • 10Cleveland,J.P.; Anczykowski,B.; Schmid,A.E.; Elings,V.B.Appl.Phys.Lett.1998,72,2613.

共引文献28

同被引文献73

  • 1Sun D, Guo H. Monte Carlo simulations on interfacial properties of bidisperse gradient copolymers [J]. Polymer, 2015, 63: 82-90.
  • 2Chui C, Boyce M C. Monte Carlo modeling of amorphous polymer deformation: evolution of stress with strain [J]. Macromolecules, 1999, 32(11): 3795-3808.
  • 3Papakonstantopoulos G J, Yoshimoto K, Doxastakis M, Nealey P F, de Pablo J J. Local mechanical properties of polymeric nanocomposites [J]. Physical Review E, 2005, 72(3): 031801.
  • 4Termonia Y, Meakin P, Smith P. Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers [J]. Macromolecules, 1985, 18(11): 2246-2252.
  • 5Edgecombe S, Linse P. Monte Carlo simulation of two interpenetrating polymer networks: structure, swelling, and mechanical properties [J]. Polymer, 2008, 49(7): 1981-1992.
  • 6Rottler J, Robbins M O. Growth, microstructure, and failure of crazes in glassy polymers [J]. Physical Review E, 2003, 68(1): 011801.
  • 7Rottler J, Robbins M O. Unified description of aging and rate effects in yield of glassy solids [J]. Physical Review Letters, 2005, 95(22): 225504.
  • 8Robbins M O, Hoy R S. Scaling of the strain hardening modulus of glassy polymers with the flow stress [J]. Journal of Polymer Science (Part B): Polymer Physics, 2009, 47(14): 1406-1411.
  • 9Hoy R S, Robbins M O. Strain hardening of polymer glasses: entanglements, energetics, and plasticity [J]. Physical Review E, 2008, 77(3): 031801.
  • 10Riggleman R A, Lee H N, Ediger M D, de Pablo J J. Free volume and finite-size effects in a polymer glass under stress [J]. Physical Review Letters, 2007, 99(21): 215501.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部