期刊文献+

基于相似度的加权复杂网络社区发现方法 被引量:6

Detecting community in weighted complex network based on similarities
原文传递
导出
摘要 针对加权复杂网络中的社区结构发现问题,本文定义基于权重关系的相似度,并在此基础上定义了节点中心度和归属度,改进GN算法的模块度评价函数,提出一种基于相似度的中心聚类算法(SCC).该算法通过计算节点间的相似度,选取合理的中心度大的节点作为社区中心节点,最后基于节点归属度来聚集从而形成社区;同时,提出了用相似度代替边介数的改进GN算法SGN.通过理论分析,并在数据集上进行实验验证,结果表明SCC算法与WGN算法、SGN算法相比,速度和精度上均有较大改善.同时与I2C算法相比,社区的划分有效性更好. To detect communities in weighted complex network, this paper defines a local similarity with weighted value, putting forward the node's centrality degree and belonging degree, improving the mod- ularity function of the GN algorithm, and propose a central cluster algorithm based on similarity(SCC). This algorithm refer to use the node's belonging degree to cluster nodes to construct communities after calculating the similarities of nodes and selecting the suitable and the larger centrality degree. Mean- while, this paper proposes a new GN algorithm based on similarity (SGN), which substituted between- ness for similarity. After the theoretical analysis and the experimental verification based on dataset, shows that SCC algorithm has improvement in speed and accuracy compared with WGN and SGN algo- rithms. And the SCC algorithm has better community division compared with I^2C algorithm.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期1170-1176,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家"863"高技术发展计划项目(2008AA01Z105)
关键词 加权复杂网络 社区发现 相似度 SCC算法 SGN算法 Weighted complex network Detecting community Similarity SCC algorithm SGN algo-rithm
  • 相关文献

参考文献18

  • 1Newman M. The structure and function of complex networks[J]. SIAM Rev, 2003, 45: 167.
  • 2程学旗,沈华伟.复杂网络的社区结构[J].复杂系统与复杂性科学,2011,8(1):57-70. 被引量:69
  • 3Vander Leij M, Goyal S. Strong ties in a small world[J]. Rev Network Economics, 2011, 10(2): 1.
  • 4Barabclsi A L, Albert R. Emergence of scaling in random networks[J]. Sci, 1999, 286(5439): 509.
  • 5Guimera R, Amaral L A N. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028) : 895.
  • 6杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:209
  • 7田柳,狄增如,姚虹.权重分布对加权网络效率的影响[J].物理学报,2011,60(2):797-802. 被引量:45
  • 8Newman M E J. Analysis of weighted networks[J]. Phys Rev E, 2004, 70(5): 056131.
  • 9Duch J, Arenas A. Community detection in complex networks using extremal optimization[J]. Phys Rev E, 2005, 72(2): 027104.
  • 10Lu Z, Wen Y, Cao G. Community detection in weighted networks: Algorithms and applications [C]//Proceedings of 2013 IEEE International Con- ference on Pervasive Computing and Communica- tions (PerCom). San Dieg: IEEE, 2013.

二级参考文献198

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献369

同被引文献52

  • 1KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs [J]. Bell System Technical Journal, 1970,49(2): 291-307.
  • 2FORTUNATO S, CASTELLANO C. Community detection in graphs [J]. Physics Reports, 2010,486(3/4/5) : 75-174.
  • 3WHITE S,SMYTH P. A spectral clustering approach to find- ing communities in graphs [C]//Proceeding of the 2005 SIAM International Conference on Data Mining. Newport Beach: [s. n. ],2005.
  • 4Chenchen, DU Donglei, XU machuan. An improved semi- definite programming hierarchies rounding approximation algo- rithm for maximum graph bisection problems[J]. Journal of Combinatorial Optimization, 2013,29(1) : 53-56.
  • 5NEWMAN M E J. Detecting community structure in networks [J]. Eur Phys J B, 2004,38(2) :321-330.
  • 6CLAUSE A. Finding local community structure in networks [J]. Phys Rev E, 2005,72 (2) : 026132.
  • 7XIE Fuding, J I Min, ZHANG Yong. The detection of commu- nity structure in network via an improved spectral method [J]. Physica A, 2009,338(20) : 3268-3272.
  • 8CUI Shuyu, TIAN Guixian. The spectrum and the signless laplaeian spectrum of eoronae [J]. Linear Algebra and Its Applications, 2012,437(7 ) : 1692-1703.
  • 9DAS K C,GUTMAN I,CEVIK A S. On the Laplacian-ener- gy-~ike invariant [J]. Linear /Mgebra and Its App~.icatlons, 2014,442(2) :58-68.
  • 10HIGHAM D J, KALNAA G, MILLA K. Spectral clustering and its use in bioinformaties [J]. Journal of Computational and Applied Mathematics, 2007,204(1 ) : 25-27.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部