期刊文献+

^6LiD脉冲复合离子源与聚变DT等离子体的相互作用 被引量:2

^6LiD compound ion source interact with fusion DT plasma
下载PDF
导出
摘要 分析了氘化锂与聚变DT等离子体的相互作用,采用蒙特卡罗方法计算了在密度500g/cm3、燃料半径100μm条件下的作用参数。结果表明:热斑加热的电子需要最小能量为4.65 MeV,氘离子需要的最小能量为122.83 MeV,沉积在热斑中的最大能量为34.43 MeV,锂离子最小能量为368.5 MeV;最小电流强度为1.15×107 A。电子、氘离子、锂离子在等离子体中沉积时间分别为0.07,0.49,0.64ps,均小于1ps。采用氘化锂作为加热粒子源,克服了其他单离子加热热斑的方法遇到的一些困难,是一种较好的方法。 A method was presented that a compound ion source of LiD was used to heat hot spot produced in ICF experiment.The interacting process between LiD ion and DT plasma was analysed and the heating parameter was calculated by MonteCarlo method under ICF experimental condition of 500 g/cma in density and 100 μm in diameter.The results show that the smallest incident energy is 4.65,122.83 and 368.5 MeV,respectively,and the smallest electronic current is 1.15 × 10^7 A,and the deposition time is 0.07 ps,0.49 ps and 0.64 ps for electron,deuterium ion and lithium ion,deuterium ion and lithium ion,respectively.The largest deposition energy for deuterium ion in hotspot is 34.43 MeV.Compared to the methods in present particle beam projects,the compound ion source could be better for hot spot heat.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第11期91-94,共4页 High Power Laser and Particle Beams
关键词 等离子体 复合离子源 蒙特卡罗方法 氘化锂 plasma copmpound ion source Monte Carlo method LiD
  • 相关文献

参考文献15

  • 1Honrubia J J,Meyer-ter-Vehn J.Fast ignition of fusion targets by laser-driven electrons[J].Plasma Physics and Controlled Fusion,2009,51:014008.
  • 2Solodov A A,Anderson K S,Betti R,et al.Integrated simulations of implosion,electron transport,and heating for direct-drive fast-ignition targets[J].Physics of Plasmas,2009,16:056309.
  • 3Temporal M,Ramis R,Honrubial J J,et al.Fast ignition induced by shocks generated by laser-accelerated proton beams[J].Plasma Physics and Controlled Fusion,2009,51:035010.
  • 4Temporal M,Honrubia J J,Atzeni S.Proton-beam driven fast ignition of inertially confined fuels:Reduction of the ignition energy by the use of two proton beams with radially shaped profiles[J].Physics of Plasmas,2008,15:052702.
  • 5Davis J,Petrov G M,Mehlhorn T A.Generation of laser-driven light ions suitable for fast ignition of fusion target[J].Plasma Phys Control Fusion,2011,53:045013.
  • 6王衍斌.快点火参数窗口的计算[J].强激光与粒子束,2012,24(1):123-128. 被引量:3
  • 7王衍斌.快重离子束实现点火的可行性[J].强激光与粒子束,2013,25(1):67-70. 被引量:3
  • 8Davis J R.Alfvén limit in fast ignition[J].Phys Rev E,2004,69:065402.
  • 9Key M H,Freeman R R,Hatchett S P.Proton fast ignition[R].UCRL-JRNL-209599,2005.
  • 10Ziegler J F.Stopping of energetic light ions in elemental matter[J].J Appl Phys,1999,85(3):1249-1272.

二级参考文献21

  • 1沈百飞.惯性聚变物理[M].北京:科学出版社,2008.
  • 2Atzeni S. Inertial fusion ignitor: ignition pulse parameter window vs the penetration depth of the heating particle and the density of the precompressed fuel[J]. Phys Plasmas, 1999, 4(8) :3316-3326.
  • 3Honrubia J J, Meyer-ter-Vehn J. Fast ignition of fusion targets by laser-driven electrons[J]. Plasma Phys Control Fusion, 2009,51:014008.
  • 4Solodov A A, Anderson K S, Betti R, et al. Integrated simulations of implosion, electron transport, and heating for direct-drive fast-ignition targets[J]. Phys Plasmas, 2009,16:056309.
  • 5Temporal M, Ramis R, Honrubial J J, et al. Fast ignition induced by shocks generated by laser-accelerated proton beams[J]. Plasma Phys Control Fusion, 2009, 51:035010.
  • 6Temporal M, Honrubia J J, Atzeni S. Proton-beam driven fast ignition of inertially confined fuels: reduction of the ignition energy by the use of two proton beams with radially shaped profiles[J]. Phys Plasmas, 2008, 15: 052702.
  • 7Perkins L J, Betti R, LaFortune K N, et al. Shock ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility[J]. Phys Rev Lett, 2009,103 : 045004.
  • 8Mauldin M P, Giraldez E, Jaquez J S, et al. Fabrication of targets for proton focus cone fast ignition experiments[J]. Fusion Science And Technology, 2007, 51(4) :626-630.
  • 9Ziegler J F. The stopping of energetic light ions in elemental matter[J]. J Appl Phys, 1999, 85(3) : 1249-1272.
  • 10Solodov A A, Betti R. Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets[J].Phys Plasmas, 2008, 15: 042707.

共引文献4

同被引文献29

  • 1郭艳群,聂祚仁,席晓丽,杨建参.钨热电子发射材料的研究进展[J].稀有金属,2005,29(2):200-205. 被引量:18
  • 2张向东,王晓方.近共振区超短强激光脉冲激发的等离子体尾波场[J].强激光与粒子束,2005,17(5):689-692. 被引量:2
  • 3Tabak M, Hammer J, Glinsky M, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5):1626-1634.
  • 4Michael Schirber. Energy-for nuclear fusion, could two lasers be betler than one? [J]. Science, 2005, 310(5754):1610 1611.
  • 5Key M H. Status of and prospects for the fast ignition inertial fusion concept[J]. Physics of Plasmas, 2007, 14:055502.
  • 6Kodama R, Sentoku Y, Chen Z L, et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 2004, 432: 1005-1008.
  • 7Cai Hongbo, Mima K, Zhou Wemin, et al. Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition[J]. Physical Review Letters, 2009, 102 : 245001.
  • 8Hill D W, Castillo E, Chen K C, et al. Fabrication and characterization of fast ignition target[R]. General Atomics Report GA-A24443, 2003.
  • 9Theobald W, Solodov A A, Stoeek C, et al. Initial cone-in-shell fast-ignition experiments on OMEGA[J]. Physics of Plasmas, 2011, 18: 056305.
  • 10Azechi H, Mima K, Fujimoto Y, et al. Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Pro- jeet[J]. Nucl Fusion, 2009, 49 : 104024.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部