期刊文献+

一种基于混合量子粒子群的快速运动目标跟踪算法研究 被引量:6

Fast Moving Object Tracking Algorithm based on Hybrid Quantum PSO
下载PDF
导出
摘要 量子粒子群算法在优化过程中需要权衡局部探索性和全局开拓性,进化后期由于全局开拓能力的丧失使得种群多样性减少,设计了一种基于欧式距离的混合量子粒子群算法,通过计算粒子的种群多样性,当种群多样性低于阈值范围时加入基于欧式距离的种群划分策略划分子种群,从而保证获得全局最优解。利用标准测试函数验证提出的混合量子群算法有效性。提出了基于混合量子粒子群的Mean Shift算法(HQPSO Mean Shift)完成目标快速跟踪,克服传统Mean Shift算法的在跟踪快速移动目标时出现"跟丢"的问题。 Standard particle swarm optimization ( PS0 ) has capacity of local search exploitation and global search exploratio. The pop- ulation diversity gets easily lost during the latter period of evolution, where most particles are convergenced into near positions which is the local optimia. In this paper, a Euclid distance based hybird quantum particle swarm optimization (HQPS0) is brought up. Based on the calculation of population diversity, when the diversity is less than thereshold, population division is proposed for seperating popu- lation into two sub - populations based on Euclid distance. In this way, it will promise population diversity to get convergence into glob- al optima. Benchmark functions are adopted to testify the efficiency of HQPSO. And based on HQPS0 Mean shift algorithm will over- come the "tracking lost" problem of Mean Shift algorithm.
出处 《控制工程》 CSCD 北大核心 2014年第6期812-817,共6页 Control Engineering of China
基金 浙江工业大学建龙基金项目
关键词 量子粒子群算法 欧氏距离 快速移动 种群多样性 目标跟踪 quantum particle swarm optimization euclid distance fast moving population diversity object tracking
  • 相关文献

参考文献6

二级参考文献54

  • 1程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 4周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 5Kennedy J, Eberhart R C.Particle swarm optimization[J].Institute of Electrical and Electronics Engineers, 1995( 11 ) : 1942-1948.
  • 6Elegbede C.Structural reliability assessment based on particles swarm optimization[J].Structural Safety, 2005,27(10) : 171-186.
  • 7Pobinson J, Rahmat-Samii Y.Particle swarm optimization in elec- tromagnetics[J].IEEE Transactions on Antennas and Propagation, 2004,52 (2) : 397-406.
  • 8Salman A, Ahmad I.Al-Madani S.Particle swarm optimization for task assignment problem[J].Microprocessors and Microsystems, 2002,26(8) :363-371.
  • 9Duan Yuhong, Gao Yuelin, Li Jimin.A new adaptive particle swarm optimization algorithm withdynamically changing inertia weight[J].Intelligent Information Management Systems and Technologies, 2006,2 (2) :245-255.
  • 10Gao Yuelin,Duan Yuhong.An adaptive particle swarm optimization algorithm with new random inertia weight[J].Communications in Computer and Information Science, 2007 (3) : 342-350.

共引文献139

同被引文献40

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部