期刊文献+

基于细菌菌落算法的电力系统无功优化 被引量:4

Reactive Power Optimization based on Bacterial Colony Optimization
下载PDF
导出
摘要 电力系统无功优化具有非线性,多控制变量,多约束条件,连续变量和离散变量混杂的特点,针对现有算法或容易陷入局部最优解或收敛速度慢的缺点,提出了一种细菌菌落(bacterial colony optimization,BCO)优化算法,将BCO优化算法首次应用于电力系统无功优化问题。BCO算法将问题的解空间视为细菌培养液,在其中放置单个或少量细菌个体,模拟细菌菌落的生长进化过程,该算法本身具有进化机制,并且提出了一种新的结束准则。BCO算法通过繁殖适应度高的个体,死亡适应度低的个体,可以尽快的获得适应度更优的个体,从而可以避免算法陷入局部最优解,同时也加快了收敛速度。用BCO算法对IEEE14节点标准测试系统进行无功优化计算,实验结果表明,细菌菌落(BCO)优化算法较其他算法具有较强的全局寻优能力,且收敛速度快,鲁棒性好,可以作为求解电力系统无功优化问题的一种新途径。 In allusion to such features as nonlinearity, multi control variables, multi constraints and coexistence of continuous varia- bles and discrete variables in power system reactive power optimization. According to the drawbacks of the existing algorithm which is easy to fall into local optimal and slow convergence speed , this paper first apply bacterial colony optimization algorithm (BCO) in reac- tive power optimization. BCO considers the solution space of the problem as a certain culture medium. A single bacterium or a few bac- teria are used to simulate the evolution process of the bacterial colony. And the BCO itself has a certain evolutionary mechanism and give a new termination criterion. Because the algorithm make use of the idea of breeding individuals of high fitness and death the indi- viduals of low fitness, it could acquire better fitness as quickly as possible , avoid the algorithm fall into local optima and accelerate the convergence. The algorithm was implemented on the IEEE - 14 bus system . The results show that BCO has stronger global optimal searching ability, faster convergence rate and better robustness compared with other optimization algorithms, Therefore, It can solve problems of power system reactive power optimization as a new approach.
出处 《控制工程》 CSCD 北大核心 2014年第6期935-938,943,共5页 Control Engineering of China
基金 国家自然科学基金(41075019) 上海市研究生创新基金项目(JWCXSL1302)
关键词 电力系统 无功优化 细菌菌落优化算法 power system reactive power optimization bacterial colony optimization algorithm
  • 相关文献

参考文献20

  • 1Iba K.Optimal VAr allocation by genetic algorithm[C].Proceedings of the Second International Forum on ANNPS,1993:163-168.
  • 2Wu Q H,Cao Y J,Wen J Y.Optimal reactive power dispatch using an adaptive genetic algorithm[J].Electrical power & energy systems 1998.20(8):563-569.
  • 3Zhang Y.,Liao M.,Ren Z.Cataclysmic genetic algorithm for optimal reactive power dispatch comparing with an interior-point algorithm[C].Eighth IASTED International Conference on POWER AND ENERGY SYSTEMS,Marina del Rey,CA,USA,2005:24-26.
  • 4熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化[J].中国电机工程学报,2006,26(11):102-108. 被引量:86
  • 5钟红梅,任震,张勇军,李邦峰.免疫算法及其在电力系统无功优化中的应用[J].电网技术,2004,28(3):16-19. 被引量:51
  • 6Eberhart R,Shi Yuhui.Tracking and optimizing dynamic systems with particle swarms[C].Process IEEE Int Conforeness on Evolutionary Computation.Hawaii,2001:94-100.
  • 7Kennedy J.Stereotyping:Improving particle swarm performance with cluster analysis[C].Pro IEEE Int Conf on Evolutionary Computation,La Jolla,2000:1507-1512.
  • 8张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用[J].电网技术,2006,30(8):19-24. 被引量:60
  • 9Shi Yuhui,Eberhart R.Fuzzy adaptive particle swarm optimization[C].Proc IEEE Int Conf on Evoluitionary Computation.Seoul,2001:101-106.
  • 10赵涛,熊信银,吴耀武.基于混沌优化算法的电力系统无功优化[J].继电器,2003,31(3):20-22. 被引量:20

二级参考文献83

共引文献233

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部