期刊文献+

基于L-M优化算法的猪舍氨气浓度预测模型研究 被引量:10

Prediction model for piggery ammonia concentration based on L-M optimal algorithm
下载PDF
导出
摘要 在规模化养殖中,猪舍环境直接影响猪健康水平及生产能力。针对猪舍环境因素(包括温度、湿度、风速和氨气浓度)进行数据采集,选取具有代表性30 d数据,建立基于L-M优化算法的3-7-1三层结构的BP神经网络模型,对猪舍环氨气浓度进行预测。结果表明,预测模型经过90步达到目标误差,网络收敛速度快,效率高,预测值与实测值最大相对误差仅为1.72%,与线性预测方法相比较可提高猪舍氨气浓度预测的准确性与及时性,为猪舍环境预警及控制提供支持,也为其他行业预测模型建立提供参考。 In the large-scale farming, piggery environment impacts on the health of swine and production capacity directly. Piggery environmental factors mainly include wind speed, temperature, humidity and ammonia concentration, the representational data during 30 continuous days were selected. The 3-7-1 BP neural network model of the three-layer structure based on L-M optimal algorithm was built to predict the piggery ammonia concentration. It is shown in the experiment that network reaches the target error after 90 steps, the model has the characteristics of fast network convergence and high efficiency, and the biggest relative error between predicted and measured values is only 1.72%, the accuracy and timeliness of the piggery environmental prediction is greatly improved. The prediction model established in the paper can provide support for the piggery environment early warning and control, and also can provide a viable idea for other industries to establish prediction model.
出处 《东北农业大学学报》 CAS CSCD 北大核心 2014年第10期74-79,共6页 Journal of Northeast Agricultural University
基金 国家"863"项目(2012AA101905) 黑龙江省青年科学基金项目(QC2013C065) 黑龙江省教育厅科学技术研究项目(12531465) 黑龙江省畜牧兽医行业公共基础数据平台关键技术研究与建立(GC10B501)
关键词 L-M优化算法 BP神经网络 预测模型 猪舍氨气浓度 L-M optimal algorithm BP neural network prediction model piggery ammonia concentra-tion
  • 相关文献

参考文献17

  • 1陈长喜,张宏福,王兆毅,王乙丁.畜禽健康养殖预警体系研究与应用[J].农业工程学报,2010,26(11):215-220. 被引量:29
  • 2Seedorf J, Hartung J, Schroder M, et al. Concentrations and emis- sions of airborne Endotoxins and microorganisms in livestock buildings in Northern Europe[J]. Agric Engng Res, 1998, 70: 97- 109.
  • 3Angelika H, Eberhard H, Thomas J, et al. Cooling effects and evaporation characteristics of fogging systems in an experimental piggery[J]. Biosystems Engineering, 2007(97): 395-405.
  • 4Farmer C, Devillers N, Widowski T, et al. Impacts of a modified farrowing pen design on sow and litter performances and air quality during two seasons[J]. Livestock Science, 2006(104): 303- 312.
  • 5Ki Y K, Chi N K. Airborne microbiological characteristics inpublic buildings of Korea[J]. Building and Environment, 2007 (42): 2188-2196.
  • 6Ni J Q, Vinckier C, Coenegrachts J, et al. Effect of manure on ammonia emission from a fattening pig house with partly slatted floor[J]. Livestock Production Science, 1999, 59:25-31.
  • 7Rumelhart D E, Mcclelland J L. Parallel distributed processing [M]. Cambridge: The MITPress, 1986.
  • 8Atiya A, Ji C Y. How initial conditions affect generalization performance in large networks[J]. IEEETrans Neural Networks, 1997, 8(2): 448-451.
  • 9江学军,唐焕文.前馈神经网络泛化性能力的系统分析[J].系统工程理论与实践,2000,20(8):36-40. 被引量:44
  • 10张兵,袁寿其,成立,袁建平,从小青.基于L-M优化算法的BP神经网络的作物需水量预测模型[J].农业工程学报,2004,20(6):73-76. 被引量:50

二级参考文献67

共引文献261

同被引文献113

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部