期刊文献+

刚柔耦合多体系统动力学模型降阶 被引量:7

Model reduction of dynamics for rigid-flexible multi-body systems
下载PDF
导出
摘要 提出了基于模态综合法的刚柔耦合多体系统动力学模型降阶方法。该方法用自然坐标法和绝对节点坐标法分别描述刚柔耦合多体系统中的刚体构件和柔性体构件,同时用Craig-Bampton方法对柔性体模型进行减缩。对于刚体构件与柔性体构件之间只存在线性约束的情况,建立了消除线性约束的刚柔耦合多体系统动力学方程。最后,为了验证的该方法的有效性,对刚柔耦合双摆进行了研究。仿真结果表明:适当选择模态就可以在满足计算精度的同时减少计算时间,提高计算效率。 Based on the component modal synthesis,a modal reduction method for rigid-flexible multibody systems is presented in the paper.The natural coordinate formulation and the absolute nodal coordinate formulation are used to describe the rigid parts and the flexible parts of rigid-flexible multi-body systems respectively.Craig-Bampton method is used to reduce the modes of the flexible parts.In the case linear constraints exist between the rigid parts and the flexible parts,the linear constraints are eliminated and the dynamical equation for rigid-flexible multi-body systems is obtained.Finally,in order to verify the effectiveness of the method,a rigid-flexible double pendulum is studied,which shows that properly selected modes can meet the requirement of calculation accuracy while the computing time is reduced.
出处 《振动工程学报》 EI CSCD 北大核心 2014年第5期708-714,共7页 Journal of Vibration Engineering
关键词 刚柔耦合多体系统 模态综合法 绝对节点坐标法 自然坐标法 大变形 rigid-flexible multi-body system component modal synthesis absolute nodal coordinate formulation natural coordinate formulation large deformation
  • 相关文献

参考文献24

  • 1Likins P W. Finite element appendage equations for hybrid coordinate dynamic analysis[J]. Journal of Sol- ids and Structures, 1972, 81 709-731.
  • 2Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2): 139-151.
  • 3Haering W J, Ryan R R, Scott R A. A new flexible body dynamic formulation for beam structures under- going large overall motion[A]. 33rd Structural Dy- namics and Materials Conference[C]. Dallas: AIAA, 19921415-1423.
  • 4Mayo J M, Garcia-Vallejo D, Dominguez J. Study of the geometric stiffening effect: comparison of different formulations[J]. Multibody System Dynamics, 2004, 11: 321-341.
  • 5Shabana A A. Definition of the slopes and the finite el- ement absolute nodal coordinate formulation [J]. Multibody System Dynamics, 1997, 1: 339-348.
  • 6Berzeri M, Shabana A A. Development of simplemodels for the elastic forces in the absolute nodal co- ordinate formulation[J]. Journal of Sound and Vibra- tion, 2000, 235(4): 539-565.
  • 7Escalona J L, Hussien H A, Shabana A A. Applica- tion of the absolute nodal coordinate formulation to multibody system dynamics[J]. Journal of Sound and Vibration, 1998, 214(5): 833-851.
  • 8Omar M A, Shabana A A. A two-dimensional shear deformable beam for large rotation and deformation problems[J]. Journal of Sound and Vibration, 2001, 243(3) : 565-576.
  • 9Kerkkfinen K S, Sopanen J T, Mikkola A M. A linear beam finite element based on the absolute nodal coor- dinate formulation[J]. ASME Journal of Mechanical Design, 2005, 127: 621-630.
  • 10Garcia-Vallejo D, Mikkola A M, Escalona J L. A new locking-free shear deformable finite element based on absolute nodal coordinates[J]. Nonlinear Dynamics, 2007, 50: 249-264.

二级参考文献8

共引文献44

同被引文献55

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部