期刊文献+

基于CUDA的并行K-means聚类图像分割算法优化 被引量:29

CUDA-based Parallel K-means Clustering Algorithm
下载PDF
导出
摘要 为提高K-means聚类算法的运算速度,基于CUDA架构提出一种分块、并行的K-means算法,并采用'合并访问'、'多级规约求和'、'负载均衡'和'指令优化'等策略优化并行算法。实验结果表明,并行K-means算法的分割效果与串行K-means算法相同,但运行速度得到了极大的提高,加速比最高达到560,很好地解决了农业工程实际中由于分割算法带来的瓶颈问题,能够极大地提高农业劳动生产率。 K-means clustering algorithm is an excellent algorithm which has been widely used in the image processing and data mining. However, the algorithm arouses a high computational complexity. This paper made a parallel analysis of K-means algorithm in detail, and proposed a partitioning and parallel K- means algorithm based on CUDA (Compute unified device architecture). In addition, some optimization strategies, e.g. , coalesced memory access, parallel reduction, load balance and instruction optimization, were discussed to obtain the higher performance. Experimental results show that the parallel K-means algorithm achieves 560x speedup over the sequential C codes, while maintains the same effect. Hence it solves the bottleneck of the algorithm perfectly, which is an attractive alternative to the sequential K-means algorithm for image segmentation and clustering analysis.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第11期47-53,74,共8页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(61271280) 国家级大学生科技创新重点资助项目(201310712068)
关键词 图像分割 聚类分割算法 统一计算架构 图形处理器并行优化 Image segmentation K-means clustering algorithm CUDA GPU Parallel optimization
  • 相关文献

参考文献16

二级参考文献268

共引文献529

同被引文献310

引证文献29

二级引证文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部