期刊文献+

城市快速路交通事件持续时间生存分析 被引量:10

Survival Analysis of Traffic Incident Duration for Urban Expressways
下载PDF
导出
摘要 提出城市快速路交通事件持续时间生存分析方法.依托上海市中心快速路网的交通事件数据,将生存分析引入交通事件形成及演化机理分析.其根据大量交通事件样本的特征属性,采用Kaplan-Meyer的非参数回归构建基于风险的交通事件持续时间模型,解析其在五类影响因素作用下的时空分布特性,并采用Cox回归线性模型综合评价交通事件持续时间的显著影响因素,分析其作用的强度和方向,提取表征上海市快速路交通事件运营管理水平的重要特征参数.结果表明:上海市快速路的交通事件持续时间在不同类别的影响因素下分布特性存在明显差异,日夜、事件类型、涉及车辆数、影响车道数、涉及货车、所处路段位置、瓶颈处、出动拖车和出动消防车等影响因素对事件持续时间有显著影响. This paper introduces the survival analysis into the traffic incident mechanism. A survival analysis based Modeling of traffic incident duration for urban expressways is presented. Based on the observed traffic incident data of viaduct expressways in Shanghai, China, this model first analyzes the feature attributes of many traffic incident samples, and employs nonparametric regression based on Kaplan-Meyer model to estimate hazard-based traffic incident duration. Then, the key impact factors of traffic incident are classified into five types and the spatial-temporal distribution characteristics of traffic incident duration time are analyzed. Finally, linear Cox regression is used to comprehensively evaluate multidimensional influencing factors of traffic incident duration. The key characteristic parameters of expressway incident management in Shanghai are optimized to analyze the evolution mechanism of incident duration. The result shows that, for different type of influencing factors, the spatial-time distribution of traffic incident duration in Shanghai expressway has significant difference, and nine factors as day and night,incident type, related vehicle number, related lane number, location, bottleneck and trailer significantly affect the incident duration.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2014年第5期168-174,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家863计划课题(2012AA112307) 上海市创新基金资助(11ZZ27)
关键词 城市交通 快速路 交通事件 持续时间 生存分析 COX回归 urban traffic expressway traffic incident incident duration survival analysis Cox regression
  • 相关文献

参考文献12

  • 1U S Department of Transportation. Traffic incident management handbook [M]. Washington D C: Federal, Administration, 2010.
  • 2Boyles S, Fajardo D, Waller S. A Na'l"ve Bayesian classifier for incident duration prediction[C]. 86th Annual Meeting of the Transportation Research Board, 2007.
  • 3Zografos K G, Konstantions N A, George bl V. A real- time decision support system for roadway incident response logistics[J]. Transportation Research, Part C, 2002,10(1) : 1-18.
  • 4Garib A, Radwan A E, A1- Deck H. Estimating magnitude and duration of incident delays[J]. Journal of Transportation Engineering, 1997,123 (6) : 459-466.
  • 5Washington S P, Karlaftis M G, Mannering F L. Statistieal and econometric methods for transportationdata analysis[M]. CRC press, Boca Raton FL, 2011.
  • 6Khattak A, Schofer J, Wang M. A simple time sequential procedure for predicting freeway incident duration[J]. Journal of Intelligent Transportation Systems, 1995, 2 (2):113-138.
  • 7Chung Y. Development of an accident duration prediction model on the Korean freeway systems[J]. Accident Analysis and Prevention, 2010, 42 ( 1 ) : 282- 289.
  • 8Doohee Nam, Fred Mannering. An exploratory hazard- based analysis of highway incident duration[J]. Transportation Research, 2000,34(2) : 85-102.
  • 9周映雪,杨小宝,环梅,四兵锋.基于生存分析的城市道路交通拥堵持续时间研究[J].应用数学和力学,2013,34(1):98-106. 被引量:12
  • 10Tiwari G, Bangdiwala S, Saraswa A, et al Survival analysis: Pedestrian risk exposure at signalized intersections[J]. Transportation Research Part F: Traffic Psychology and Behavior, 2007,10(2) :77-89.

二级参考文献22

  • 1张冠军,化存才.昆明市区交通拥堵状况及解堵策略的评估模型[J].云南师范大学学报(自然科学版),2007,27(1):14-19. 被引量:4
  • 2彭博.大范围交通控制与交通流诱导协同关键技术研究[D].博士学位论文.长春:吉林大学,2011.
  • 3Chung K H, Hui P M, Gu G Q. Two-dimensional traffic flow problems with faulty traffic lights[ J]. Physical Review E, 1995, 51( 1 ) : 772-774.
  • 4Sakakibara T, Honda Y, Horiguchi T. Effect of obstacles on formation of traffic jam in a two- dimensional traffic network[ J]. Physica A, 2000, 276( 1 ) : 316-337.
  • 5Watanabe M S. Dynamical behavior of a two-dimensional cellular automaton with signal pro- cessing[J]. Physica A, 2003, 324(3/4): 707-716.
  • 6Maerivoet S, Moor B D. Cellular automata models of road traffic[J]. Physics Reports, 2005, 419( 1 ) : 1-64.
  • 7Guo X L, Yang H. Pareto-improving congestion pricing and revenue refunding with multiple user classes[J]. Transportation Research Part B, 2010, 44(8/9) : 972-982.
  • 8Yang H, Xu W, He B S, Meng Q. Road pricing for congestion control with unknown demand and cost functions[J]. Transportation Research Part C, 2010, 18(2) : 157-175.
  • 9Stathopoulos A, Karlaftis M. Modeling duration of urban traffic congestion [ J ]. Journal of Transportation Engineering, 2002, 128(6) :587-590.
  • 10Lee E, Wang J. Statistical Methods for Survival Data Analysis [ M ]. New York: John Wiley & Sons, Inc, 2003.

共引文献11

同被引文献57

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部