期刊文献+

基于Boltzmann机神经网络认知机制的机器人趋光控制 被引量:3

Robot phototaxis control based on Boltzmann machine neural network cognitive mechanism
原文传递
导出
摘要 针对移动机器人未知环境下的趋光控制问题,模拟人或动物"感知-行动"认知机制,对具有趋光特性的移动机器人进行设计,提出一种基于Boltzmann机神经网络的趋光控制方法.该方法首先应用知识集对机器人趋光控制器的Boltzmann机神经网络进行趋光训练;然后应用Boltzmann机神经网络的运行机制实现趋光控制.仿真实验表明,该方法能够提高机器人学习的控制精度. For mobile robot phototaxis control problems, the human or animal“perception-action”cognitive mechanism is simulated. The structure of mobile robot is designed and the method of phototaxis control is proposed based on the Boltzmann machine neural network. The Boltzmann machine neural network is trained by the knowledge set. The phototaxis control method is implemented by using the Boltzmann machine neural network operation mechanism. Simulation results show that the proposed method can improve the control accuracy and the success rate of robot learning.
出处 《控制与决策》 EI CSCD 北大核心 2014年第12期2189-2194,共6页 Control and Decision
基金 国家973计划项目(2012CB720000) 国家自然科学基金项目(61075110 61375086) 北京市自然科学基金/北京市教育委员会科技计划重点项目(KZ201210005001) 高等学校博士学科点专项科研基金项目(20101103110007)
关键词 移动机器人 趋光技能 认知机制 BOLTZMANN机 mobile robot phototaxis skill cognitive mechanism Boltzmann machine
  • 相关文献

参考文献14

  • 1何光锋,王凌云,徐加鹏.基于模块化控制的多功能智能小车设计[J].现代电子技术,2013,36(16):137-139. 被引量:8
  • 2Crespi A, Lachat D, Pasquier A. Controlling swimming and crawling in a fish robot using a central pattern generator[J]. Autonomous Robots, 2008, 25(1/2): 3-13.
  • 3周超,曹志强,王硕,董翔,谭民.微小型仿生机器鱼设计与实时路径规划[J].自动化学报,2008,34(7):772-777. 被引量:8
  • 4Sumoto H, Yamaguchi S. Development of a motion control system using phototaxis for a fish type robot[C]. Proc of the 20th Int Offshore and Polar Engineering Conf. Cupertino: ISOPE, 2010: 307-310.
  • 5Watson R A, Ficici S G, Pollack J B. Embodied evolution: Distributing an evolutionary algorithm in a population of robots[J]. Robotics and Autonomous Systems, 2002, 39(1): 1-18.
  • 6Tuci E, Ampatzis C, Vicentini F, et al. Evolving homogeneous neurocontrollers for a group of heterogeneous robots: Coordinated motion, cooperation, and acoustic communication[J]. Artificial Life, 2008, 14(2): 157-178.
  • 7Jose A F, Gerardo G A, Miguel A M. Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation[J]. Robotics and Autonomous Systems, 2009, 57(4): 411-419.
  • 8Dai L Z, Ruan X G, Wang G W, et al. Neural networks based autonomous learning for a desktop robot[C]. Proc of theWorld Congress on Intelligent Control and Automation. New York: IEEE, 2012: 739-742.
  • 9Asada M, Uchibe E, Hosoda K. Cooperative behavior acquisition for mobile robots in dynamically changing real worlds via vision-based reinforcement learning and development[J]. Artificial Intelligence, 1999, 110(2): 275-292.
  • 10Mihai D, Grigore B F, Ahmed T. Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning[J]. Robotics and Computer Integrated Manufacturing, 2012, 28(2): 132-146.

二级参考文献9

共引文献14

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部