期刊文献+

一种压缩感知信号的快速恢复方法 被引量:4

A Fast Recovery Method of Compressed Sensing Signal
下载PDF
导出
摘要 针对最优化1-范数恢复压缩感知信号过程中的不可解情况,提出一种压缩感知信号快速恢复方法.该方法从最优化0-范数的观点出发,设计了新的目标函数拟合信号0-范数,以避免求解NP问题及不可解情况;在求解过程中提出一种类牛顿法的搜索方向进行求解,使求解速度达到线性速度.实验结果表明,文中方法恢复的成功率高、稳定性强、速度快,适合处理大型数据. Minimization of 1-norm has been widely used to recover compressed se However, it has no always close-form solution theoretically. This paper presents a method of compressed sensing signal. In order to avoid solving the NP problems and problems, a new objective function is designed to fit O-norm of the signal and a new sear proposed to find the solution, with a solution speed equal to the speed of linear Experimental results show that the above method, with high compression ratio and go effect, is well-suited for processing large data. nsing signal.fast recovery the insolvable ch direction is optimization. od restoration
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第12期2196-2202,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61402206)
关键词 压缩感知 加权函数 类牛顿方法 稀疏表达 compressed sensing weighted function quasi-Newton method sparse representation
  • 相关文献

参考文献14

  • 1de Castro Y,Gamboa F.Exact reconstruction using Beurling minimal extrapolation[J].Journal of Mathematical Analysis and Applications,2012,395(1):336-354.
  • 2Bredies K,Pikkarainen H K.Inverse problems in spaces of measures[J].ESAIM:Control,Optimisation and Calculus of Variations,2013,19(1):190-218.
  • 3Candes E J,Fernandez-Granda C.Towards a mathematical theory of super-resolution[J].Communications on Pure and Applied Mathematics,2014,67(6):906-965.
  • 4Duarte M F,Baraniuk R G.Spectral compressive sensing[J].Applied and Computational Harmonic Analysis,2013,35(1):111-129.
  • 5Grasmair M,Scherzer O,Haltmeier M.Necessary and sufficient conditions for linear convergence of l1-regularization[J].Communications on Pure and Applied Mathematics,2011,64(2):161-182.
  • 6Scherzer O,Walch B.Sparsity regularization for radon measures[M]//Lecture Notes in Computer Science.Heidelberg:Springer,2009,5567:452-463.
  • 7Chartrand R.Exact reconstruction of sparse signals via nonconvex minimization[J].IEEE Signal Processing Letters,2007,14(10):707-710.
  • 8Candes E J,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 9Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 10Gu X F,Gortler S J,Hoppe H.Geometry images[J].ACM Transactions on Graphics,2002,21(3):355-361.

同被引文献6

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部