摘要
针对最优化1-范数恢复压缩感知信号过程中的不可解情况,提出一种压缩感知信号快速恢复方法.该方法从最优化0-范数的观点出发,设计了新的目标函数拟合信号0-范数,以避免求解NP问题及不可解情况;在求解过程中提出一种类牛顿法的搜索方向进行求解,使求解速度达到线性速度.实验结果表明,文中方法恢复的成功率高、稳定性强、速度快,适合处理大型数据.
Minimization of 1-norm has been widely used to recover compressed se However, it has no always close-form solution theoretically. This paper presents a method of compressed sensing signal. In order to avoid solving the NP problems and problems, a new objective function is designed to fit O-norm of the signal and a new sear proposed to find the solution, with a solution speed equal to the speed of linear Experimental results show that the above method, with high compression ratio and go effect, is well-suited for processing large data. nsing signal.fast recovery the insolvable ch direction is optimization. od restoration
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2014年第12期2196-2202,共7页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61402206)
关键词
压缩感知
加权函数
类牛顿方法
稀疏表达
compressed sensing
weighted function
quasi-Newton method
sparse representation