期刊文献+

近似测地距离度量下的图像抗噪分割方法 被引量:2

Noisy Image Segmentation Based on Approximate Geodesic Distance
下载PDF
导出
摘要 对含有噪声的图像进行有效分割是图像处理中的难点问题之一.为解决欧氏距离带来的空间局限性,对含有噪声的图像进行有效分割,提出一种基于近似测地距离和边界加权的重心Voronoi图划分(CVT)能量模型的图像抗噪分割方法.首先利用图像梯度的大小和方向建立一种近似测地距离计算模型,降低了算法的时间复杂度;然后采用该测地距离测度定义边界加权的CVT能量模型,并极小化能量模型实现数字图像的抗噪分割.实验结果表明,该方法可以有效地对含有噪声的数字图像进行抗噪分割. Segmentation for noisy images is a difficult topic in image processing. To break through the restriction of Euclidean distance and segment the noisy image effectively, a new method based on a geodesic framework and EWCVT (edge-weighted centroidal Voronoi tessellation) energy model is presented in this paper. Firstly, we propose an approximate model of geodesic distance according to image gradient, which can decrease the computation complexity of the algorithm greatly. Then, we apply this geodesic distance to achieve anti noisy image segmentation by minimizing EWCVT energy. Experimental results show that the proposed method can carry out anti noisy segmentation effectively.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第12期2214-2222,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61272245 61303088 61202151 61402261) 山东省优秀中青年科学家科研奖励基金(BS2013DX048) 济南市高校创新计划(201202015)
关键词 测地距离 边界加权CVT能量模型 图像分割 图像去噪 geodesic distance edge-weighted centroidal Voronoi tessellation image segmentation image denoising
  • 相关文献

参考文献17

  • 1Geng H,Luo M,Hu F.Improved self-adaptive edge detection method based on Canny[C]//Proceedings of the 5th International Conference on Intelligent Human-Machine Systems and Cybernetics.Los Alamitos:IEEE Computer Society Press,2013:527-530.
  • 2Matalas I,Benjamin R,Kitney R.An edge detection technique using the facet model and parameterized relaxation labeling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(4):328-341.
  • 3纪则轩,陈强,孙权森,夏德深.各向异性权重的模糊C均值聚类图像分割[J].计算机辅助设计与图形学学报,2009,21(10):1451-1459. 被引量:26
  • 4Munoz X,Freixenet J,Cufi X,et al.Strategies for image segmentation combining region and boundary information[J].Pattern Recognition Letters,2003,24(1):375-392.
  • 5Zheng F H,Zhang C M,Zhang X F,etal.A fast anti-noise fuzzy C-means algorithm for image segmentation[C]// Proceedings of the 20th IEEE International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,2013:2728-2732.
  • 6王斌,李洁,高新波.一种基于边缘与区域信息的先验水平集图像分割方法[J].计算机学报,2012,35(5):1067-1072. 被引量:44
  • 7Boykov Y Y,Jolly M P.Interactive graph cuts for optimal boundary & region segmentation of object in N-D image[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2001,1:105-112.
  • 8Dinh Hoan Trinh,Marie Luong,Jean-Marie Rocchisani,Canh Duong Pham,Huy Dien Pham,Francoise Dibos.An Optimal Weight Method for CT Image Denoising[J].Journal of Electronic Science and Technology,2012,10(2):124-129. 被引量:1
  • 9HE Ruo-nan,YANG Wei-wei,LI Mei.An Improved Image Denoising Algorithm Based on Structural Similarity and Curvelet[J].科技信息,2013(1):60-60. 被引量:1
  • 10Li-li XING,Qian-shun CHANG,Tian-tian QIAO.The Algorithms about Fast Non-local Means Based Image Denoising[J].Acta Mathematicae Applicatae Sinica,2012,28(2):247-254. 被引量:5

二级参考文献79

  • 1刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 2李云松,李明.基于灰度空间特征的模糊C均值聚类图像分割[J].计算机工程与设计,2007,28(6):1358-1360. 被引量:27
  • 3Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated cluster[J].Journal of Cybernetics and Systems, 1973, 3(3):32-57.
  • 4Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981.
  • 5Pham D L, Prince J L. Adaptive fuzzy segmentation of magnetic resonance images [J]. IEEE Transactions on Medical Imaging, 1999, 18(9): 737-752.
  • 6Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
  • 7Chen S, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transactions on System Man and Cybernetics-Part B, 2004, 34(4) : 1907-1916.
  • 8Szilagyi L, Benyo Z, Szilagyi S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, 2003:724-726.
  • 9Cai W, Chen S, Zhang D Q. Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition, 2007, 40(3) : 825-838.
  • 10Szilagyi L, Szilagyi S M, Benyo Z. A modified FCM algorithm for fast segmentation of brain MR images [M] // Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Heidelberg: Springer, 2007, 41: 119-127.

共引文献81

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部