期刊文献+

面向多目标视频跟踪的出生强度估计方法 被引量:3

Birth Intensity Estimation Method for Multi-target Video Tracking
下载PDF
导出
摘要 针对多目标视频跟踪中的新生目标出生强度估计问题,提出一种有效的基于熵分布和覆盖率的方法.该方法利用前一时刻所获目标状态及测量值对出生强度进行初始化,再利用当前时刻所获测量值对出生强度进行更新.在更新阶段,首先选取仅依赖于权值的负指数熵分布作为出生强度的先验分布,滤除出生强度中与当前时刻测量值无关的噪声分量;然后通过计算出生强度与相应测量值间的覆盖率对出生强度权值进行再次更新,进一步滤除权值小于给定阈值的噪声分量.实验结果表明,文中方法有效地降低了噪声分量的影响,提高了多目标视频跟踪的准确率. In this paper, an effective birth intensity estimation method that based on entropy distribution and coverage rate is proposed for multi-target video tracking. The birth intensity is first initialized according to the previously obtained target states and measurements. The currently obtained measurements are then used to update the initialized birth intensity. In the updating stage, the negative exponent entropy distribution that depends on the weight is first selected as the prior distribution of the birth intensity. By doing so, the components within the birth intensity those are irrelevant to the measurements could be regarded as noises and should be removed. The coverage rate between each birth intensity component and the corresponding measurement is then computed to further eliminate those components whose weights are smaller than the given threshold. Experiments on noisy video sequences are conducted to show that the proposed birth intensity estimation method can effectively eliminate the noises and finally improve the tracking accuracy.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第12期2223-2231,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61273286 51175087) 福建省杰出青年基金(2013J06013)
关键词 多目标视频跟踪 高斯混合概率假设密度滤波器 出生强度估计 熵分布 multi-target video tracking Gaussian mixture probability hypothesis density filter birthintensity estimation entropy distribution
  • 相关文献

参考文献23

  • 1Choi H S,Kim I S,Choi J Y.Combining histogram-wise and pixel-wise matchings for kernel tracking through constrained optimization[J].Computer Vision and Image Understanding,2014,118:61-70.
  • 2李冠彬,吴贺丰.基于颜色纹理直方图的带权分块均值漂移目标跟踪算法[J].计算机辅助设计与图形学学报,2011,23(12):2059-2066. 被引量:49
  • 3Xie Y,Zhang W S,Qu Y Y,et al.Discriminative subspace learning with sparse representation view-based model for robust visual tracking[J].Pattern Recognition,2014,47 (3):1383-1394.
  • 4于汉超,唐晓庆,刘军发,陈益强,黄陈.手掌姿态自适应的单指尖鲁棒跟踪方法[J].计算机辅助设计与图形学学报,2013,25(12):1793-1800. 被引量:5
  • 5Bai T X,Li Y F,Zhou X L.Discriminative sparse representation for online visual object tracking[C]// Proceedings of IEEE International Conference on Robotics and Biomimetics.Los Alamitos:IEEE Computer Society Press,2012:79-84.
  • 6Mahler R P S.Multitarget Bayes filtering via first-order multitarget moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178.
  • 7Vo B N,Ma W K.The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing,2006,54(11):4091-4104.
  • 8吕学斌,周群彪,陈正茂,熊运余,蔡葵.高斯混合概率假设密度滤波器在多目标跟踪中的应用[J].计算机学报,2012,35(2):397-404. 被引量:17
  • 9Ristic B,Clark D,Vo B N.Improved SMC implementation of the PHD filter[C]//Proceedings of the 13th Conference on International Information Fusion.Los Alamitos:IEEE Computer Society Press,2010:1-8.
  • 10Vo B N,Vo B T,Pham N T,et al.Joint detection and estimation of multiple objects from image observations[J].IEEE Transactions on Signal Processing,2010,58 (10):5129-5141.

二级参考文献49

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3常发亮,马丽,乔谊正.遮挡情况下基于特征相关匹配的目标跟踪算法[J].中国图象图形学报,2006,11(6):877-882. 被引量:16
  • 4常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 5Fukunaga F, Hostetler L D. The estimation of the gradient of a density function with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975, 21(1): 32- 40.
  • 6Bradski G. Computer vision face tracking for use in a perceptual user interface [J]. Intel Technology Journal, 1998, 2(Q2): 1-15.
  • 7Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-577.
  • 8Yang C, Duraiswami R, Davis L. Efficient mean shift tracking via a new similarity measure [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2005: 176-183.
  • 9Adam A, Rivlin E, Shimshoni I. Robust fragments based tracking using the integral histogram [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006:798-805.
  • 10Wang F, Yu S, Yang J. A novel fragments-based tracking algorithm using mean shift [C] //Proceedings of IEEE Conference on Control, Automation, Robotics and Vision. Los Alamitos: IEEE Computer Society Press, 2008:694-698.

共引文献68

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部