期刊文献+

噪声相关情况下说话人跟踪方法 被引量:1

Speaker Tracking Method Research with Correlative Noises
下载PDF
导出
摘要 利用滤波方法进行说话人跟踪时,过程与观测噪声相互独立的假设容易产生误差偏移,导致跟踪精度降低.针对这一问题,以高斯噪声为背景,在重要性权重条件最小方差意义下推导了噪声相关情况下的滤波步骤,并将该方法应用到说话人跟踪问题中.仿真实验表明,该方法较好地改善了噪声相关情况下的非线性跟踪问题,有效地提升了说话人跟踪方法的适应性和抗干扰能力. In order to address the speaker tracking problem in the strong noise cases, a tracking method of microphone array based on particle filter with correlative noises is proposed in this paper. This method is based on the Gaussian correlative noise background. The optimal proposal distribution function of particles is deduced under the condition of minimum variance significance and is applied to the speaker tracking problem. The proposal distribution function is updated with the observation information of the speech signal arrival time difference, and provides the optimal weights for noise correlative cases. The simulation experimental results show that the proposed method improves the precision of nonlinear filtering in noise related cases, and promotes the adaptability and anti- interference ability of the speaker tracking system effectively.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第12期2251-2257,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61263031) 甘肃省自然科学基金(1010RJZA046) 甘肃省教育厅研究生导师基金(0914ZTB003)
关键词 说话人跟踪 粒子滤波 建议分布函数 相关噪声 speakers tracking particle filter proposal distribution function correlative noise
  • 相关文献

参考文献13

二级参考文献73

  • 1杜江,朱柯.智能麦克风阵列语音分离和说话人跟踪技术研究[J].电子学报,2005,33(2):382-384. 被引量:9
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3Potamitis I,Chen H M,Tremoulis G.Tracking of multiple moving speakers with multiple microphone arrays.IEEE Transactions on Speech and Audio Processing,2004,12(5):520-529
  • 4Brandstein M A.A Framework for Speech Source Localization Using Sensor Arrays[Ph.D.dissertation],Brown University,USA,1995
  • 5Dvorkind T,Gannot S.Speaker localization exploiting spatial-temporal information.In:Proceedings of the IEEE International Workshop on Acoustic Echo and Noise Control.Kyoto,Japan:IEEE,2003.295-298
  • 6Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear and non-Gaussian Bayesian state estimation,IEE Proceedings on Radar and Signal Processing,1993,140(2):107-117
  • 7Liu J S,Chen R.Sequential Monte Carlo methods for dynamic systems.Journal of the American Statistical Association,1998,93(443):1032-1044
  • 8Vermaak J,Blake A.Nonlinear filtering for speaker tracking in noisy and reverberant environments.In:Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing.Salt Lake City,USA:IEEE,2001.3021-3024
  • 9Ward D B,Lehmann E A,Williamson R C.Particle filtering algorithms for tracking an acoustic source in a reverberant environment.IEEE Transactions on Speech and Audio Processing,2003,11(6):826-836
  • 10Guo D,Wang X D.Quasi-Monte Carlo filtering in nonlinear dynamic systems.IEEE Transactions on Signal Processing,2006,54(6):2087-2098

共引文献48

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部