期刊文献+

基于序值与拥挤度的拟态物理学多目标算法 被引量:5

Aritificial physics multi-objective algorithm based on sequence value and crowding degree
下载PDF
导出
摘要 根据约束多目标优化问题的特点,在拟态物理学优化(aritificial physics optimization,APO)算法的基础上,将无约束多目标APO(multi-objective APO,MOAPO)算法引入到约束多目标优化领域中。提出约束违反度的判断准则,并采取一种更为有效的约束处理技术,从而构造出一种解决约束多目标优化问题的基于序值与拥挤度的拟态物理学多目标优化(improved constrained rank multi-objective aritificial physics optimization,ICRMOAPO)算法。在随机搜索过程中动态调整引力因子与惯性权重,增强了非劣解集的多样性。实验结果说明了该算法的有效性,通过与序值约束多目标APO(constrained rank multi-objective APO,CRMOAPO)算法、非支配排序遗传(non-dominated sorting genetic algorithm,NSGA)算法、多目标遗传(multi-objective genetic algorithm,MOGA)算法的对比实验,表明了该算法具有较好的分布性能,为约束多目标优化问题的求解提供了一种新的思路与方法。 According to the characteristics of the constrained multi-objective optimization problem,the un-constrained multi-obj ective aritificial physics optimization algorithm (MOAPO )is introduced into the field of constrained multi-obj ective optimization on the basis of aritificial physics optimization algorithm (APO ).The judgment criterion of constraint violation degree is put forward,and a more effective constraint processing tech-nology is taken.Then a swarm intelligence improved constrained rank multi-obj ective aritificial physics optimi-zation (ICRMOAPO)algorithm based on sequence value and crowding degree applied to solve the problem of constrained multi-objective optimization is constructed.In random searching,the factor of gravity and inertia weight are adjusted dynamically,to enhance the diversity of the non-inferior solution set.The comparative ex-periments between constrained rank multi-objective aritificial physics optimization(CRMOAPO),non-dominated sorting genetic algorithm(NSGA),and multi-obj ective genetic algorithm(MOGA)show that the effectiveness of the proposed algorithm has better performance of distribution and convergence,thereby providing a new train of thought and a method for solving the constrained multi-objective optimization problem.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第12期2442-2448,共7页 Systems Engineering and Electronics
基金 国家青年科学基金(51305288) 山西省回国留学人员科研资助项目(2012-073) 山西省青年科学基金(2013021020-1)资助课题
关键词 拟态物理学优化 约束多目标 序值 优化 artificial PHYSICS OPTIMIZATION (APO) constrained multi-obj ective sequence value optimization
  • 相关文献

参考文献15

  • 1王辉,钱锋.基于拥挤度与变异的动态微粒群多目标优化算法[J].控制与决策,2008,23(11):1238-1242. 被引量:22
  • 2张利彪,周春光,刘小华,许相莉,孙彩堂.求解多目标优化问题的一种多子群体进化算法[J].控制与决策,2007,22(11):1313-1316. 被引量:16
  • 3张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 4Parsopoulos K E, Tasoulis D K, Vrahatis M N. Multi-objeelive optimization using parallel vector evaluated particle swarm opti mization[C]//Proc, of the Association of International Ac countants, 2004:823 - 828.
  • 5Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multi objective problems[C]//Proc, of the Symposi- um on Applied Computing, 2002 : 603 - 607.
  • 6Rao R V, Patel V. Multi-objective optimization of heat exchang- ers using a modified teaching-learning-based optimization algo rithm[J]. Applied Mathematical Modelling, 2013, 37 (3) : 1147 - 1162.
  • 7Srinivas N, DeD K. Multi-objective optimization using nondomi- nated sorting in genetic algorithms[J]. Evolutionary Computa- tion, 1994, 4(2) :221 -248.
  • 8Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algo- rithm for multbobjeetive optimization[C]//Proc, of the World Con- gress on Evolutirznary Computation. Piscataze y, 1994 : 1453 - 1461.
  • 9Venkata R, Patel V. Multi objective optimization of two stage thermoelectric cooler using a modified teaching learning-based optimization algorithm[J]. Engineering Applications of Arti- ficial Intelligence, 2013, 26(1): 430-445.
  • 10Carlos A, Coello C. Evolutionary multi-objective optimization some current research trends and topics that remain to be ex- plored[J]. Front Computer Science, 2009, 3(1):18 - 30.

二级参考文献52

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 3王小艺,侯朝桢,原菊梅,郭飞,郝伟.防空火力分配建模及优化方法研究[J].控制与决策,2006,21(8):913-917. 被引量:24
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 5Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. Proc IEEE Int Conf on Evolutionary Computation. Piseataway: IEEE Service Center, 2002, 2: 1051-1056.
  • 6Hu X, Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proc IEEE Int Conf on Evolutionary Computation. Honolulu, 2002, 2: 1677-1681.
  • 7Fieldsend J E, Singh S. A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence[C]. Proc UK Workshop on Computational Intelligence. Birmingham, 2002:37-44.
  • 8Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 9Reyes-Sierra M, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-Art[J]. Int J of Computational Intelligence Research, 2006, 2 (3) : 287-308.
  • 10Ratnaweera A, Halgamuge S K, Watson H C. Self- organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240-255.

共引文献295

同被引文献40

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部