期刊文献+

时间轴上一类二阶动态系统振荡的充分条件 被引量:4

Sufficient conditions of oscillation for certain second-order dynamic equations on time scales
下载PDF
导出
摘要 研究时间轴T上的一类具非线性中立项的非线性的二阶中立型变时滞动态系统[A(t)ф(yΔ(t))]Δ+∑mi=1Pi(t)fi(ф(x(δi(t))))=0的振荡性,这里y(t)=x(t)+∑lj=1Bj(t)gj(x(τj(t)))且ф(u)=|u|λ-1 u(λ>0为实常数),得到了该动态系统振荡的几个新的充分条件,并举例说明了论文定理的应用. This paper studied oscillations of the second-order nonlinear neutral variable delay dynamic equation [A(t)φ(yΔ(t))]Δ+∑mi=1Pi(t)fi(φ(x(δj(t)))) =0 with nonlinear neutral on a time scaleT,wherey(t) =x(t)+∑Bj(t)gj(x(τj(t))) and φ(u)=|u|λ-1u(here,λ>0 is a constant).We established some new sufficient conditions for this equation.Some examples were given to illustrate the main results.
机构地区 梧州学院数理系
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第5期1-6,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071222) 广西教育厅科研项目(2013YB223) 湖南省科技厅基金资助项目(2012FJ3107)
关键词 振荡性 时间轴 中立型时滞动态系统 非线性 oscillation time scales neutral delay dynamic equations nonlinear
  • 相关文献

参考文献19

  • 1杨甲山,李继猛.带最大值项的二阶非线性差分方程的振动性定理[J].安徽大学学报(自然科学版),2012,36(3):19-22. 被引量:6
  • 2Ravi P,Agarwal,Martin B,et al.Nonoscillation and oscillation:theory for functional differential equations[M].New York:Marcel Dekker,2004.
  • 3Hilger S.Analysis on measure chains-a unified approach to continuous and discrete calculus[J].Results Math,1990,18:18-56.
  • 4Bohner M,Peterson A.Dynamic equations on time scales,an introduction with applications[M].Boston:Birkhauser,2001.
  • 5Agarwal R P,Bohner M,Grace S R,et al.Discrete oscillation theory[M].New York:Hindawi Publishing Corporation,2005.
  • 6Zhang Q X,Gao L.Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales[J].Sci Sin Math,2010,40(7):673-682.
  • 7Sahiner Y.Oscillation of second order delay differential equations on time scales[J].Nonlinear Analysis,TMA,2005,63:e1073-e1080.
  • 8韩振来,时宝,孙书荣.时间尺度上二阶时滞动力方程的振动性[J].中山大学学报(自然科学版),2007,46(6):10-13. 被引量:29
  • 9Sun S,Han Z,Zhang C.Oscillation of second order delay dynamic equations on time scales[J].J Appl Math Comput,2009,30:459-468.
  • 10Grace S R,Agarwal R P,Kaymakcalan B,et al.Oscillation theorems for second order nonlinear dynamic equations[J].J Appl Math Comput,2010,32:205-218.

二级参考文献108

  • 1范彩霞,赵爱民,邓嵩.带有极大值项的中立型差分方程的振动性[J].山西大学学报(自然科学版),2005,28(1):5-7. 被引量:10
  • 2Ethiraju Thandapani,刘召爽,李巧銮,Sebastian Elizabeth.Asymptotic Behavior of Second Order Neutral Difference Equations with Maxima[J].Journal of Mathematical Research and Exposition,2006,26(2):191-198. 被引量:3
  • 3韩振来,孙书荣,杨殿武.时间尺度上二阶非线性时滞动力方程的Kamenev型振动准则[J].山东大学学报(理学版),2006,41(6):16-19. 被引量:5
  • 4Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math, 1990, 18: 18-56.
  • 5Agarwal R P, Grace S R, O'Regan D. Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations. Dordrecht: Kluwer, 2002.
  • 6Agarwal R P, Bohner M, Grace S R, et al. Discrete Oscillation Theory. New York: Hindawi Publishing Corporation, 2005.
  • 7Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhauser, 2001.
  • 8Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhauser, 2003.
  • 9Agarwal R P, Bohner M, O'Regan D, Peterson A. Dynamic equations on time scales: a survey. J Comput Appl Math, 2002, 141:1 26.
  • 10Bohner M, Saker S H. Oscillation of second order nonlinear dynamic equations on time scales. Rocky Mountain J Math, 2004, 34:1239-1254.

共引文献73

同被引文献79

  • 1杨甲山.时间测度链上具非线性中立项的二阶阻尼动力方程的振动性[J].浙江大学学报(理学版),2012,39(3):261-265. 被引量:13
  • 2潘元元,韩振来.时标上二阶中立型时滞动力方程的振动性[J].济南大学学报(自然科学版),2012,26(2):191-194. 被引量:5
  • 3张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 4韩振来,时宝,孙书荣.时间尺度上二阶时滞动力方程的振动性[J].中山大学学报(自然科学版),2007,46(6):10-13. 被引量:29
  • 5BOHNER M, PETERSON A. Dynamic Equations on Time Scales, An Introduction with Applications [M]. Boston: Birkhauser, 2001.
  • 6AGARWAL R P, BOHNER M, GRACE S R, et al. Discrete Oscillation Theory [M]. New York: Hindawi Publishing Corporation, 2005.
  • 7ZHANG Q X, GAOL. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales [J]. Sci Sin Math, 2010, 40(7): 673-682.
  • 8SAHINER Y. Oscillation of second order delay differential equations on time scales [J]. Nonlinear Analysis, TMA, 2005, 63: e1073-e1080.
  • 9SUN S, HAN Z, ZHANG C. Oscillation of second order delay dynamic equations on time scales [J]. J Appl Math Comput, 2009, 30: 459-468.
  • 10GRACE S R, AGARWAL R P, KAYMAKCALAN B, et al. Oscillation theorems for second order nonlinear dynamic equations [J]. J Appl Math Comput, 2010, 32: 205-218.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部