摘要
生理信号的某些特征参数在不同情绪下会有不同的变化规律,在此基础上,对4种不同情绪(喜、怒、哀、乐)下的多生理信号(心电信号、肌电信号、呼吸信号、皮电信号)的混沌特征参量进行情绪识别。文中采用C5.0决策树分类器算法,以样本的属性作为节点,以属性的取值作为分支的树结构,解决了大样本情况下的机器学习问题。研究结果表明,C5.0决策树这种算法在基于混沌特征参量进行情绪识别方面具有较高的识别率。
Some characteristic parameters of physiological signals have different change rules under different emotions, on this basis, the chaotic characteristic parameters of multiple physiological signals ( ECG, EMG, RSP and SC) under the four different emotions (joy, anger, sadness, pleasure) are recognized. This paper adopts C5.0 decision tree classifier algorithm and solves the machine learning problem in the condition of large samples by taking the sample properties as nodes and the attribute value as the tree structure of the branch. Research results show that C5.0 decision tree algorithm has higher recognition rate in emotion recognition based on cha- otic characteristic parameters.
出处
《长春大学学报》
2014年第10期1320-1325,共6页
Journal of Changchun University
基金
教育部"春晖计划"项目(Z2014136)
吉林省自然科学基金项目(201215110)
关键词
多生理信号
C5.0决策树
情绪识别
multiple physiological signals
C5.0 decision tree
emotion recognition