期刊文献+

水下认知网络中的哺乳动物定位测速算法

Localization and speed measurement algorithm targeting marine mammals for underwater cognitive acoustic networks
下载PDF
导出
摘要 针对水下认知声学网络(UCAN)中的环境感知问题,提出一种针对海洋哺乳动物的被动定位(PLM)算法及相应的基于多普勒效应的测速算法SMD。PLM算法基于海洋哺乳动物发声信号声源级范围,结合接收信号强度,运用检索筛选的方法推算发声位置。SMD在PLM定位的基础上,利用接收生物信号的多普勒效应对其运动测速。实验结果表明,PLM与SMD均能达到较高的精度,其中PLM算法的平均定位误差随海豚游速的增加而增加,其平均值约为10 m,定位成功率可达到90%。PLM和SMD结合,可较准确地估计海洋哺乳动物的运动区域。 In view of the problem of environmental sensing in Underwater Cognitive Acoustic Networks (UCAN), a Passive Localization algorithm targeting Marine Mammals (PLM) and Speed Measurement algorithm based on Doppler effect (SMD) were proposed. PLM uses the method of retrieval and screening with received signal power to localize marine mammals based on the source level range of their signals. SMD calculates speed using Doppler effect of the received signals on the basis of PLM localization. The experimental results show that PLM and SMD can achieve high accuracy. The average error of PLM increases with the increase of dolpine's speed, and its mean value is about 10 m. Success rate of localization using PLM can be 90%. The combination of PLM and SMD can help to estimate the movement area of marine mammals accurately.
出处 《计算机应用》 CSCD 北大核心 2014年第12期3400-3404,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61162003) 青海省科技计划项目(2012-ZR-2989) 海南省应用技术研究与开发专项(ZDXM2014086)
关键词 水下认知声学网络 海洋哺乳动物 定位算法 测速算法 多普勒频移 Underwater Cognitive Acoustic Networks (UCAN) marine mammal localization algorithm speed measurement algorithm Doppler shift
  • 相关文献

参考文献14

  • 1钟永信,黄建国,韩晶.基于空间唤醒的水声传感器网络节能路由协议[J].电子与信息学报,2011,33(6):1326-1331. 被引量:12
  • 2金志刚,苏毅珊,刘自鑫,窦飞.基于运动预测的水下传感器网络MAC协议[J].电子与信息学报,2013,35(3):728-734. 被引量:10
  • 3雷辉,姜卫东,郭勇.能量高效的水声传感器网络多跳非均匀分簇算法[J].计算机应用,2013,33(1):124-126. 被引量:8
  • 4TOREES D, CHARBIWALA Z, FRIEDMAN J, et al. Spectrum signaling for cognitive underwater acoustic channel allocation[ C]// Proceedings of the 29th IEEE International Conference on Computer Communications. Piscataway: IEEE, 2010:1-6.
  • 5LUO Y, PU L, ZUBA M, et al. Challenges and opportunities of un- derwater cognitive acoustic networks[ J]. IEEE Transactions on E- merging Topics in Computing, 2014, 2(2): 198 -211.
  • 6LUO Z, PU L, CUI J. RISM: An efficient spectrum management system for underwater cognitive acoustic networks[ D]. Storrs: Uni- versity of Connecticut, 2013.
  • 7BICEN A O, SAHIN A B, AKAN O B. Spectrum-aware underwater networks: cognitive acoustic communications[ J]. IEEE Vehicular Technology Magazine, 2012, 7(2): 34-40.
  • 8IQBAL J, JIBRAN M, ALl S S, et al. Differential sensitivity mod- eling and analysis of acoustic channel capacity in spectrum-aware underwater networks[ C]// Proceedings of 2014 11th International Bhurban Conference on Applied Sciences and Technology. Piscat- away: IEEE, 2014:357-360.
  • 9张国胜,顾晓晓,邢彬彬,韩家波.海洋环境噪声的分类及其对海洋动物的影响[J].大连海洋大学学报,2012,27(1):89-94. 被引量:38
  • 10SIMS P Q, VAUGHN R, HUNG S K, et al. Sounds of Indo-Pacif- ic humpback dolphins (Sousa chinensis) in west Hong Kong: a preliminary description[ J]. Journal of the Acoustical Society of A- merica, 2011, 131(1): EIA8-EL53.

二级参考文献89

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部