期刊文献+

基于Kinect骨骼预定义的体态识别算法 被引量:4

Posture recognition method based on Kinect predefined bone
下载PDF
导出
摘要 针对基于视觉的体态识别对环境要求较高、抗干扰性差等问题,提出了一种基于人体骨骼预定义的识别分类方法。该算法结合Kinect多尺度深度信息和梯度信息检测人体;基于随机森林采用正负样本互限思想识别人体各个部分,根据各部分距离构建人体姿态向量,识别骨架;再根据体态类别,构建最优分类超平面、核函数,采用改进的支持向量机进行体态分类。实验结果表明,所提算法的分类识别准确率可达94.3%,具有实时性好,抗干扰性强,鲁棒性较好等特点。 In view of the problems that posture recognition based on vision requires a lot on environment and has low antiinterference capacity, a posture recognition method based on predefined bone was proposed. The algorithm detected human body by combining Kinect multi-scale depth and gradient information. And it recognized every part of body based on random forest which used positive and negative samples, built the body posture vector. According to the posture category, optimal separating hyperplane and kernel function were built by using improved support vector machine to classify postures. The experimental results show that the recognition rate of this scheme is 94.3%, and it has good real-time performance, strong anti-interference, good robustness, etc.
出处 《计算机应用》 CSCD 北大核心 2014年第12期3441-3445,共5页 journal of Computer Applications
基金 中央高校基础科研基金资助项目(N110804005) 机器人学国家重点实验室开放基金资助项目(2012018)
关键词 体态识别 多尺度深度信息 随机森林 支持向量机 人机交互 posture recognition multi-scale depth information random forest support vector machine human-computer interaction
  • 相关文献

参考文献12

  • 1RAO C, YILMAZ A, SHAH M. View-invariant representation and recognition of actions[ J]. International Journal of Computer Vision, 2002, 50(2) : 203 - 226.
  • 2PARAMESWARAN V, CHELLAPPA R. View invariants for human action recognition [ C ]// Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison. Washington, DC: IEEE Computer Society, 2003:1-7.
  • 3AGGARWAL J K, CAI Q. Human motion analysis: a review[ J]. Computer Vision and Image Understanding, 2005, 73(3): 428 - 440.
  • 4THOMAS B M, ERIK G. A survey of computer vision-based human motion capture [ J]. Computer Vision and Image Understanding, 2001,81(3): 231 -268.
  • 5WANG L, HU W M, TIE N T. Recent developments in human mo- tion analysis[ J[. Pattern Recognition, 2003, 36(3) : 585 - 601.
  • 6WANG L, TAN T, NING H, et al. Silhouette analysis-based gait recognition for human identification[ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2003, 25 (12) : 1505 - 1518.
  • 7CAMPBELL L W, BECKER D A, AZARBAYEJANI A, et al. In- variant features for 3D gesture recognition[ C[// Proceedings of the 1996 International Conference on Automatic Face and Gesture Rec- ognition. Piseataway: IEEE, 1996:157-162.
  • 8KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking[ C]// Proceedings of the 3rd On-line Learning for Computer Vision Workshop. Washington, DC: IEEE Computer Society, 2009:165 - 173.
  • 9OJALA T, PIETIKAINEN M, MAENPAA T. Multi-resolution gray- scale and rotation invariant texture classification with local binary patterns[ J]. International Journal of Computer Vision and Pattern Recognition, 2002, 24(7) : 971 -987.
  • 10RAHEJA J L, CHAUDHARV A, SIGNAL K. Tracking of finger- tips and centers of palm using Kinect[ C] // Proceedings of the 3rd International Conference on Computational Intelligence, Modeling and Simulation. Piscataway: IEEE, 2011 : 248 - 252.

二级参考文献11

  • 1Wikipedia. The Free Encyclopedia [ EB/OL]. http://en. wikipedia.org/wiki /Natural_user_interface.
  • 2唐纳德_诺曼.设计心理学[M].梅琼,译.北京:中信出版社,2003.
  • 3Thomas Kuehn. The Kinect Sensor Platform [ J ]. Advances in MediaTechnology,2011 (6) :2191 -2198.
  • 4邓福元.科技化教学新趋势Kinect-Education[ M] .台湾:资策会数位教育研究所,2011.
  • 5Kalal Z, Mikolajczyk K, Matas J. Face-tld : tracking-leaming-detectionapplied to faces [ C ] //Proceedings of the International Conference onImage Processing. Hong Kong:2010:3789 -3792.
  • 6Amit Y,Geman D. Shape quantization and recognition with randomizedtrees[ C]//Neural Computation, 1997,9(7) :1545 - 1588.
  • 7Jamie S, Johnson M, Cipolla R. Semantic texton forests for image cate-gorization and segmentation[C]//Proc. CVPR,2008.
  • 8Sharp T. Implementing decision trees and forests on a GPU[ C]//Proc.ECCV’2008.
  • 9Jamie S,Andrew Fitzgibbon,Mat Cook,et al. Real-Time Human PoseRecognition in Parts from a Single Depth Image [ C ]//Proc.CVPR,2011.
  • 10Maza I, Kondak K, Bernard M, et al. Multi-UAV cooperation and con-trol for load transportation and deployment [ J ]. Journal of Intelligentand Robotic Systems,2009,57(1 -4) :417 —449.

共引文献13

同被引文献41

  • 1王向东,张静文,毋立芳,徐文泉.一种运动轨迹引导下的举重视频关键姿态提取方法[J].图学学报,2014,35(2):256-261. 被引量:4
  • 2沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 3李义宝,张学勇,马建国,汪力君.基于BP神经网络的改进算法研究[J].合肥工业大学学报(自然科学版),2005,28(6):668-671. 被引量:24
  • 4Parasuraman R. Sheridan T B, Wickens C D. A mode| for types and levels of human interaction with atttomatimL IEEE Transactions on Systems, Man and Cybernetics,2000 ;30(3 ) : 2861297.
  • 5Hu N H, Englebienne G, Krose B. Posture recognition with a top- view camera. 2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) Tokyo, Japan,2013:2152--2157.
  • 6Lee Y, Jung K. Nnn-telnpural mutliple silhouettes in hidden markclv model for view independent posture recognition. [CCET 09. Interna- tional Con[erem.e ol Computer Engineering arid Technolog., 1:466-- 470.
  • 7Tsai 1 C, Chiu C T. Depth-based posture recognition by radar and vi- sion fi, sion for real-time applications. 2013 IEEE lnternati,mul Cun- ferenee on Acoustics, Speech anti Signal Processing (ICASSP), 2013 : 2702 --2706.
  • 8Silapasuphakumwong P, Phimohares S, Lursinsap C, et aL Posture recognition invariant to background, cloth textures, l)ody size, and camera distance using morphological geometry'. 2010 International Conference on Machine Learning and Cybernetics ( ICMLC), 2010 ; 3:1130--1135.
  • 9Yang U, Kim B, Sohn K. llluminatinl invariant skin color segmenta- tion. ICIEA 2009. 4th IEEE Conference on industrial Electronics and Appli(,ations, 2009:636--641.
  • 10Baoerjee A, Saha S, Basu, S, et al. A novel approaeh to posture recognition (ff ballet dance. 2014 IEEE International Conferenee on Electronics, Computing and Communication Technologies (|EEE CONECCT) , 2014 : 1 --5.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部