期刊文献+

基于精确欧氏局部敏感哈希的协同过滤推荐算法 被引量:9

Collaborative filtering recommendation algorithm based on exact Euclidean locality-sensitive hashing
下载PDF
导出
摘要 针对推荐系统中用户评分数据的海量高维与稀疏性,以及直接利用传统相似性度量方法来获取近邻的计算量大、结果不准等对推荐质量的影响,提出基于精确欧氏局部敏感哈希(E2LSH)的协同过滤推荐算法。首先利用精确欧氏局部敏感哈希算法对用户评分数据进行降维处理并构建索引,以快速获取目标用户的近邻用户;然后利用加权策略来预测用户评分,进而完成协同过滤推荐。实验结果表明,该算法能有效解决用户数据的海量高维与稀疏性问题,且运行效率高,具有较好的推荐质量。 In recommendation systems, recommendation results are affected by the matter that rating data is characterized by large volume, high dimensionality, extreme sparsity, and the limitation of traditional similarity measuring methods in finding the nearest neighbors, including huge calculation and inaccurate results. Aiming at the poor recommendation quality, this paper presented a new collaborative filtering recommendation algorithm based on Exact Euclidean Locality-Sensitive Hashing (E2LSH). Firstly, E2LSH algorithm was utilized to lower dimensionality and construct index for large rating data. Based on the index, the nearest neighbor users of target user could be obtained with great efficiency. Then, a weighted strategy was applied to predict the user ratings to perform collaborative filtering recommendation. The experimental results on typical dataset show that the proposed method can overcome the bottleneck of high dimensionality and sparsity to some degree, with high running efficiency and good recommendation performance.
出处 《计算机应用》 CSCD 北大核心 2014年第12期3481-3486,共6页 journal of Computer Applications
关键词 精确欧氏局部敏感哈希 协同过滤 相似性度量 推荐系统 近似近邻 Exact Euclidean Locality-Sensitive Hashing (E2LSH) collaborative fihering similarity measuring recommendation system approximate nearest neighbor
  • 相关文献

参考文献15

  • 1BREESE J, HECHERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[ C] // Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1998:43 -52.
  • 2ZHANG S, WANG W, FORD J, et al. Learning from incomplete ratings using non-negative matrix factorization[ C]// proceedings of the 6th SIAM Conference on Data Mining. Philadelphia: SIAM, 2006:549-553.
  • 3WANG Shuliang,XIE Yuan,FANG Meng.A Collaborative Filtering Recommendation Algorithm Based on Item and Cloud Model[J].Wuhan University Journal of Natural Sciences,2011,16(1):16-20. 被引量:9
  • 4吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83
  • 5李克潮,凌霄娥.云模型与用户聚类的个性化推荐[J].计算机应用,2013,33(10):2804-2806. 被引量:11
  • 6曾小波,魏祖宽,金在弘.协同过滤系统的矩阵稀疏性问题的研究[J].计算机应用,2010,30(4):1079-1082. 被引量:19
  • 7方耀宁,郭云飞,丁雪涛,兰巨龙.一种基于局部结构的改进奇异值分解推荐算法[J].电子与信息学报,2013,35(6):1284-1289. 被引量:13
  • 8CAI R, ZHANG C, ZHANG L, et al. Scalable Music recommenda- tion by search[ C]// Proceedings of the 15th ACM International Conference on Multimedia. New York: ACM, 2007:1065 - 1074.
  • 9DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[ C}//Proceedings of the 20th ACM Symposium on Computational Geometry. New York: ACM, 2004:253-262.
  • 10MAREE R, DENIS P, WEHENKEL L. Incremental indexing and distributed image search using shared randomized vocabularies [ C]//Proceedings of the 2007 ACM SIGMM International Confer- ence on Very Large Data Bases. New York: ACM, 2007:950 - 961.

二级参考文献139

  • 1卢炎生,饶祺.一种LSH索引的自动参数调整方法[J].华中科技大学学报(自然科学版),2006,34(11):38-40. 被引量:6
  • 2Xu HL,Wu X,Li XD,Yan BP.Comparison study of Internet recommendation system.Journal of Software,2009,20(2):350-362 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3388.htm[doi:10.3724/SP.J.1001.2009.03388].
  • 3Marlin B.Collaborative Filtering:A machine learning perspective[MS.Thesis].Toronto:University of Toronto,2004.
  • 4Hofmann T.Latent semantic models for collaborative filtering.ACM Trans.on Information System,2004,22(1):89-115.[doi:10.1145/963770.963774].
  • 5Blei DM,Ng AY,Jordan MI.Latent Dirichlet allocation.Journal of Machine Learning Research,2003,3(3):993-1022.[doi:10.1162/ jmlr.2003.3.4-5.993].
  • 6Netflix update:Try this at home.2006.http://sifter.org/~simon/journal/20061211.html.
  • 7Zhang S,Wang WH,Ford J,Makedon F.Learning from incomplete ratings using non-negative matrix factorization.In:Ghosh J,ed.Proc.of the 6th SIAM Conf.on Data Mining.Bethesda:SIAM,2006.549-553.
  • 8Cheng YZ,Church GM.Biclustering of expression data.In:Bourne PE,ed.Proc.of the 8th Int'l Conf.on Intelligent Systems for Molecular Biology.La Jolla:AAAI Press,2000.93-103.[doi:10.1016/j.ipm.2008.12.004].
  • 9Cheng G,Wang F,Zhang CS.Collaborative filtering using orthogonal nonnegative matrix tri-factorization.Information Processing & Management,2009,45(3):368-379.
  • 10Shan HH,Banerjee A.Bayesian co-clustering.In:Altman R,ed.Proc.of the ICDM 2008.Washington:IEEE Computer Society Press,2008.530-539.

共引文献137

同被引文献67

  • 1徐伟,王朔中.基于视频图像Harris角点检测的车辆测速[J].中国图象图形学报,2006,11(11):1650-1652. 被引量:29
  • 2Wang Jun, Vries A P, Reinders M J T. Unifying user-based and item-based collaborative filtering approaches by similarity fusion[ C ]//Proceedings of ACM SIGIR' 06. [ s. l. ] : ACM, 2006:501-508.
  • 3Karypis G. Evaluation of item-based Top-N recommendation algorithms[ C ]//Proceedings of the tenth international confer- ence on information and knowledge management. [ s. l. ] : [ s. n. ] ,2001:247-254.
  • 4Kits B, Freed D, Vrieze M. Cross-sell : a fast promotion-tuna- ble customer-item recommendation method based on condi- tionally independent probabilities [ C ]//Proceeding of the sixth ACM SIGKDD international conference on knowledge discovery data mining. [ s. l. ] :ACM ,2000:437-446.
  • 5Herlocker J L,Konstan J A, Botchers A, et al. An algorithmic framework for performing collaborative filtering[ C ]//Proceed- ings of ACM 1GIR'99. [ s. 1. ] :ACM Press, 1999:230-237.
  • 6Xue G R, Lin C ,Yang Q,et al. Scalable collaborative filtering using cluster- based smoothing [ C ]//Proceedings of SIGIR. [s.l. ] :[s. n. ],2005.
  • 7Shi Yue, I.arson M, Hanjalie A. Exploiting user similarity based on rated-item pools for improved user-based collabora- tive filtering[ C ]//Proceedings of the third ACM conference on recommender systems. [ s. l. ] : ACM ,2009 : 125-132.
  • 8Ding S,Zhao S, Yuan Q, et al. Boosting collaborative filtering based on statistical prediction errors[ C ]//Proeedding of ACM conference on recommender systems. [ s. l. ] :ACM,2008:3- 10.
  • 9马宏伟,张光卫,李鹏.协同过滤推荐算法综述[J].小型微型计算机系统,2009,30(7):1282-1288. 被引量:203
  • 10郁雪,李敏强.一种结合有效降维和K-means聚类的协同过滤推荐模型[J].计算机应用研究,2009,26(10):3718-3720. 被引量:15

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部