期刊文献+

基于图像深度信息的尺度不变特征变换算法误匹配点对剔除 被引量:8

Removal of mismatches in scale-invariant feature transform algorithm using image depth information
下载PDF
导出
摘要 特征点匹配是基于特征点的图像配准技术中的一个重要环节。针对现有基于尺度不变特征变换(SIFT)图像配准技术特征点匹配不理想,也无法较客观、快速地筛选正确匹配点对的问题,提出结合图像深度信息进行特征点误匹配筛选剔除的方法。该算法首先根据模糊聚焦线索和机器学习算法估计出待配准图像的深度信息图,再提取SIFT特征点,并在特征点匹配环节利用随机抽样一致性(RANSAC)算法迭代循环,结合深度局部连续性的原理来进一步提高匹配精度。实验结果表明,该算法具有很好的误匹配点对剔除功能。 Feature point matching is of central importance in feature-based image registration algorithms such as Scale- Invariant Feature Transform (SIFT) algorithm. Since most of the existed feature matching algorithms are not so powerful and efficient in mismatch removing, in this paper, a mismatch removal algorithm was proposed which adopted the depth information in an image to improve the performance. In the proposed approach, the depth map of an acquired image was produced using the clues of defocusing blurring effect, and machine learning algorithm, followed by SIFT feature point extraction. Then, the correct feature correspondences and the transformation between two feature sets were iteratively estimated using the RANdom SAmple Consensus (RANSAC) algorithm and exploiting the rule of local depth continuity. The experimental results demonstrate that the proposed algorithm outperforms conventional ones in mismatch removing.
作者 刘政 刘本永
出处 《计算机应用》 CSCD 北大核心 2014年第12期3554-3559,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(60862003) 科技部国际合作项目(2009DFR10530) 贵州省工业科技攻关项目(黔科合GY字(2010)3054) 教育部高等院校博士点基金资助项目(20095201110002) 贵州大学研究生创新基金资助项目(2014008)
关键词 图像配准 深度估计 特征点误匹配 随机抽样一致性 尺度不变特征变换特征点 image registration depth information feature mismatches RANdom SAmple Consensus (RANSAC) Scale-Invariant Feature Transform (SIFT) feature point
  • 相关文献

参考文献14

  • 1TON J, JAIN A K. Registering landsat images by point matching [ J]. IEEE Transactions on Geoscienee and Remote Sensing, 1989, 27(5) : 642 -651.
  • 2SILBERMAN N, KOHLI P, HOIEM D, FERGUS R. Indoor seg- mentation and support inference from RGBD images[ DB/OL]. [ 2012 - 11 - 13]. http://cs, nyu. edu/ silberman/datasets/nyu_ depth_v2, html.
  • 3FISCHLER M, BOLLES R. Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography[ J]. Communication of ACM, 1981, 24 (6) : 381 - 395.
  • 4KONRAD J, BROWN G, WANG M, et al. Automatic 2D-to-3D image conversion using 3D examples from the Internet[ C]// Pro- ceedings of SPIE: Stereoscopic Displays and Applications. Belling- ham: SPIE, 2012:82880F1 -82880F12.
  • 5DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[ C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washing- ton, DC: IEEE Computer Society, 2005:886-893.
  • 6PENTLAND A P. A new sense for depth of field[ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1987, 9(4): 523 - 531.
  • 7FONSECA L M G, COSTA M H M. Automatic registration of satel- lite images[ C[// Proceedings of the Brazilian Symposium on Com- puter Graphic and Image Processing. Piscataway: IEEE, 1997:219 - 226.
  • 8KONRAD J, WANG M, ISHWAR P. 2D-to-3D image conversion by learning depth from examples[ C l// Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC: IEEE Computer Society, 2012: 16-22.
  • 9TORR P H S, ZISSERMAN A. MLESAC: a new robust estimator with application to estimating image geometry[ J]. Computer Vision and Image Understanding, 2000, 78(1) : 138 - 156.
  • 10HARRIS C, STEPHENS M. A combined corner and edge detector [ C]// Proceedings of the 4th Alvey Vision Conference. Manches- ter: Alvey Vision Club, 1988:147-151.

同被引文献68

  • 1王铁生,程鹏里,赵东保,缑慧娟.方格网法土方量计算及误差影响[J].测绘通报,2012(S1):109-111. 被引量:39
  • 2乔钢,王巍,王玥,邢思宇.基于压缩感知的OFDM水声通信信道二次估计算法[J].声学技术,2013,32(5):357-361. 被引量:6
  • 3黄珊珊,钱政.智能电网中输电线路绝缘子在线检测方法综述[J].仪器仪表学报,2010,31(增刊):159.163.
  • 4OBERWEGER M,WENDEL A,BISCHOF H.Visual recognition and fault detection for power line insulators[C]//Proceedings of the 19th Computer Vision Winter Workshop.Kǐting,Czech Republic:CVWW,2014,1-8.
  • 5WU Q G,AN J B,LIN B.A texture segmentation algorithm based on PCA and GMAC for aerial insulator images[J].IEEE Journal of Selected Topics in Applied Earth Observations&Remote Sensing,2012,5(5):1509-1518.
  • 6HOSANG J,BENENSON R,DOLLAR P,et al.What makes for effective detection proposals?[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2016,38(4):6644-6665.
  • 7ALEXE B,DESELAERS T,FERRARI V.Measuring the Objectness of Image Windows[J].IEEE Transactions on Software Engineering,2012,34(11):2189-2202.
  • 8ENDRES I,HOIEM D.Category-independent object proposals with diverse ranking[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2013,36(2):222-234.
  • 9MANEN S,GUILLAUMIN M,VAN G L.Prime object proposals with randomized prim’s algorithm[C]//IEEE International Conference on Computer Vision.Sydney,NSW:IEEE,2013:2536-2543.
  • 10ZITNICK C L,DOLLR P.Edge boxes:Locating object proposals from edges[C]//European Conference on Computer Vision.Zurich,Switzerland:Springer,2014:391-405.

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部