摘要
特征点匹配是基于特征点的图像配准技术中的一个重要环节。针对现有基于尺度不变特征变换(SIFT)图像配准技术特征点匹配不理想,也无法较客观、快速地筛选正确匹配点对的问题,提出结合图像深度信息进行特征点误匹配筛选剔除的方法。该算法首先根据模糊聚焦线索和机器学习算法估计出待配准图像的深度信息图,再提取SIFT特征点,并在特征点匹配环节利用随机抽样一致性(RANSAC)算法迭代循环,结合深度局部连续性的原理来进一步提高匹配精度。实验结果表明,该算法具有很好的误匹配点对剔除功能。
Feature point matching is of central importance in feature-based image registration algorithms such as Scale- Invariant Feature Transform (SIFT) algorithm. Since most of the existed feature matching algorithms are not so powerful and efficient in mismatch removing, in this paper, a mismatch removal algorithm was proposed which adopted the depth information in an image to improve the performance. In the proposed approach, the depth map of an acquired image was produced using the clues of defocusing blurring effect, and machine learning algorithm, followed by SIFT feature point extraction. Then, the correct feature correspondences and the transformation between two feature sets were iteratively estimated using the RANdom SAmple Consensus (RANSAC) algorithm and exploiting the rule of local depth continuity. The experimental results demonstrate that the proposed algorithm outperforms conventional ones in mismatch removing.
出处
《计算机应用》
CSCD
北大核心
2014年第12期3554-3559,共6页
journal of Computer Applications
基金
国家自然科学基金资助项目(60862003)
科技部国际合作项目(2009DFR10530)
贵州省工业科技攻关项目(黔科合GY字(2010)3054)
教育部高等院校博士点基金资助项目(20095201110002)
贵州大学研究生创新基金资助项目(2014008)
关键词
图像配准
深度估计
特征点误匹配
随机抽样一致性
尺度不变特征变换特征点
image registration
depth information
feature mismatches
RANdom SAmple Consensus (RANSAC)
Scale-Invariant Feature Transform (SIFT) feature point