期刊文献+

基于变指数各向异性扩散和非局部的最大似然期望最大低剂量CT重建算法 被引量:3

MLEM low-dose CT reconstruction algorithm based on variable exponent anisotropic diffusion and non-locality
下载PDF
导出
摘要 针对低剂量计算机断层扫描(CT)重建图像发生严重衰退的问题,提出一种基于变指数和非局部的最大似然期望最大(MLEM)低剂量CT重建算法。该算法考虑了传统各向异性扩散中降噪不充分的缺点,把可以有效折中热传导和各向异性扩散(P-M)这两种模型的变指数,以及代替梯度检测边缘和细节的相似度函数运用到传统各向异性扩散中,从而达到所期望的效果。该算法在每次迭代中首先采用基本的MLEM算法对低剂量CT投影数据进行重建;然后利用基于非局部的相似性测度以及变指数和模糊数学的理论对各向异性扩散的扩散函数进行改进,用改进后的各向异性扩散对重建图像进行降噪;最后使用中值滤波对图像进行处理从而消除脉冲噪声点。实验结果表明,所提出算法的均方绝对误差、归一化均方距离均比有序子集惩罚最小二乘(OS-PLS)、有序子集惩罚最大似然一步迟疑(OS-PML-OSL)、基于传统P-M、基于方差的算法小,获得了高达10.52的信噪比。该算法重建出的图像可以在有效消除噪声的同时较好地保持图像的边缘和细节信息。 Concerning the serious recession problems of the low-dose Computed Tomography (CT) reconstruction images, a low-dose CT reconstruction method of MLEM based on non-locality and variable exponent was presented. Considering the traditional anisotropic diffusion noise reduction is insufficient, variable exponent which could effectively compromise between heat conduction and anisotropic diffusion P-M models, and the similarity function which could detect the edge and details instead of gradient were applied to the traditional anisotropic diffusion, so as to achieve the desired effect. In each iteration, firstly, the basic MLEM algorithm was used to reconstruct the low-dose projection data. And then the diffusion function was improved by the non-local similarity measure, variable index and fuzzy mathematics theory, and the improved anisotropic diffusion was used to denoise the reconstructed image. Finally median filter was used to eliminate impulse noise points in the image. The experimental results show the proposed algorithm has a smaller numerical value than OS-PLS ( Ordered Subsets- Penalized Least Squares), OS-PML-OSL (Ordered Subsets-Penalized Maximum Likelihood-One Step Late), and the algorithm based on the traditional PM, in the variance of Mean Absolute Error (MAE), and Normalized Mean Square Distance (NMSD), especially its Signal-to-Noise Ratio (SNR) is up to 10.52. This algorithm can effectively eliminate the bar of artifacts, and can keep image edges and details information better.
出处 《计算机应用》 CSCD 北大核心 2014年第12期3605-3608,3617,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61071192 61271357 61171178) 山西省国际合作项目(2013081035) 山西省研究生优秀创新项目(2009011020-2) 山西省研究生优秀创新项目(20123098) 中北大学第十届研究生科技基金资助项目(20131035) 山西省高等学校优秀青年学术带头人支持计划资助项目 中北大学2013年校科学基金资助项目
关键词 计算机断层扫描 非局部 图像重建 最大似然期望最大 各向异性扩散 Computed Tomography (CT) non-locality image reconstruction Maximum Likelihood Expectation Maximization (MLEM) anisotropic diffusion
  • 相关文献

参考文献17

  • 1李凯旋,黄静,马建华,田玲玲,张华,路利军,陈武凡.低剂量CT重建中的双边滤波权值优化新方法[J].电路与系统学报,2012,17(2):95-99. 被引量:3
  • 2GUI Z, LIU Y. Noise reduction for low-dose X-ray computed tomo- graphy with fuzzy filter[ J]. Optik-lntemational Journal for Light and Electron Optics, 2012, 123( 13): 1207 - 1211.
  • 3ZHANG Q, GUI Z G, CHEN Y, et al. Bayesian sinogram smoot- hing with an anisotropic diffusion weighted prior for low-dose X-ray computed tomography[ J]. Optik-lntemational Journal fir Light and Electron Optics, 2013, 124(17) : 2811 -2816.
  • 4高志凌,刘祎,桂志国.基于模糊数学的低剂量CT投影域降噪算法[J].测试技术学报,2011,25(6):477-482. 被引量:6
  • 5CUI X, ZHANG Q, LIU Y, et al. The adaptive sinogram restoration algorithm based on anisotropic diffusion by energy minimization for low-dose X-ray CT[ J]. Optik-International Journal for Light and Electron Optics, 2014, 125(5) : 1694 - 1697.
  • 6王丽艳,韦志辉.低剂量CT的线性Bregman迭代重建算法[J].电子与信息学报,2013,35(10):2418-2424. 被引量:10
  • 7LUI D, CAMERON A, MODHAFAR A, et al. Low-dose computed tomography via spatially adaptive Monte-Carlo reconstruction [ J]. Computerized Medical Imaging and Graphics, 2013, 37(7/8) : 438 -449.
  • 8CHEN Y, GAO D Z, NIE C, et al. Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting local nonprior [ J ]. Computerized Medical Imaging and Graphics, 2009, 33(7) : 495 -500.
  • 9RUST G F, AURICH V, REISER M. Noise dose reduction and image improvements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaussian filter chains [ C]// Medical Imaging 2002: Physiology and Function from Multidimensional Images. Piscataway: IEEE, 2002:186-197.
  • 10PERONA P, MALIK J. Scale space and edge detection using anisotropic diffusion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.

二级参考文献4

共引文献15

同被引文献9

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部