期刊文献+

基于自适应交叉变异量子免疫信号盲检测算法 被引量:1

Quantum Immune Algorithm Based on Adaptive Crossover-mutation Operator for Blind Signals Detection
下载PDF
导出
摘要 提出了基于自适应交叉变异算子的量子免疫信号盲检测方法,所述方法在量子化交叉与变异基础上,引入了基于自适应策略的量子免疫交叉与变异算子,用量子交叉与量子变异进行进化,同时采用了传统免疫算法中交叉和变异算子的策略,以求更好地加强种群的进化程度,仿真结果表明所提出的基于自适应交叉变异算子的量子免疫算法能够有效避免早熟现象,收敛速度更快,相同信噪比条件下误码率更低。 Considering the easy converging to local optimum and slow convergence, an adaptive crossover-mutation operator quantum immune algorithm is proposed to blind detection signals of SIMO system. Based on the quantization crossover and mutation, the adaptive immune crossover and mutation operator are introduced. Using quantum crossover and mutation for evolution enhance the evolution of the population better. Simulation results show that the algorithm can avoid premature phenomenon effectively, need shorter received signals and show high speed to blindly detect signals.
出处 《电视技术》 北大核心 2014年第23期112-115,共4页 Video Engineering
基金 国家自然科学基金项目(61302155) 南京邮电大学引进人才项目(NY212022)
关键词 自适应 量子免疫算法 盲检测 交叉变异算子 self-adaptive quantum immune algorithm blind detection crossover-mutation operator
  • 相关文献

参考文献6

  • 1QU Hongjian,ZHOU Fangzhao,ZHANG Xiangxian. An application ofnew quantum inspired immune evolutionary algorithm [ C ]//Proc. 20091 st International Workshop on Database Technology andApplications. Wuhan:IEEE Press,2009:468-471.
  • 2HAO Teng,YANG Bingyu,ZHAO Baohua. A new mutative scale chaosoptimization quantum genetic algorithm [ C ] //Proc. Chinese Control andDecision Conference. Yantai:IEEE Press,2008 ; 1547-1549.
  • 3李阳阳,焦李成.求解SAT问题的量子免疫克隆算法[J].计算机学报,2007,30(2):176-183. 被引量:45
  • 4吴秋逸,焦李成,李阳阳,邓晓政.自适应量子免疫克隆算法及其收敛性分析[J].模式识别与人工智能,2008,21(5):592-597. 被引量:8
  • 5马颖,田维坚,樊养余.基于云模型的自适应量子免疫克隆算法[J].计算物理,2013,30(4):627-632. 被引量:7
  • 6JIAO L, LI Y, GONG M, et al. Quantum-inspired immune clonal algo-rithm for global optimization[ J]. IEEE Trans. Systems,Man,and Cy-bernetics ,Part B : Cybernetics,2008 , 38(5) : 1234-1253.

二级参考文献35

  • 1李阳阳,焦李成.求解SAT问题的量子免疫克隆算法[J].计算机学报,2007,30(2):176-183. 被引量:45
  • 2戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 3康立山 谢云 尤矢勇 罗祖华.非数值并行算法(第一册):模拟退火算法[M].北京:科学出版社,1997..
  • 4De Castro L N,Von Zuben F J.Learning and optimization using the clonal selection principle.IEEE Transactions on Evolutionary Computation,2002,6(3):239-251
  • 5Li Yang-Yang,Jiao Li-Cheng.Quantum-inspired immune clonal algorithm//Proceedings of the 4th International Conference on Artificial Immune Systems,Lecture Notes in Computer Science 1917.Berlin,Germany:Springer,2005:304-317
  • 6Han K-H,Park K-H,Lee C-H,Kim J-H.Parallel quantum inspired genetic algorithm for combinatorial optimization problem//Proceedings of the IEEE 2001 Congress on Evolutionary Computation.Seoul,Korea,2001:1422-1429
  • 7Selman B,Kautz H A,Cohen B.Noise strategies for improving local search//Proceedings of the 12th National Conference on Artificial Intelligence,American Association for Artificial Intelligence.Seattle,Washington,1994:337-343
  • 8Gottlieb J,Voss N.Adaptive fitness functions for the satisfiability problem//Proceeding of the 6th International Conference on Parallel Problem Solving from Nature,Lecture Notes in Computer Science 1917.Berlin,Germany:Springer,2000:621-630
  • 9Hey T.Quantum computing:An introduction.Computing & Control Engineering Journal,1999,10(3):105-112
  • 10Grover L K.A fast quantum mechanical algorithm for database search//Proceeding of the 28th ACM Symposium on Theory of Computing,1996:212-219

共引文献54

同被引文献13

  • 1张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 2倪志伟.BP网络中激活函数的深入研究[J].安徽大学学报(自然科学版),1997,21(3):48-51. 被引量:6
  • 3ZHANG Y5ZHANG Z Y.Blind multi-valued signals detection using discrete Hopfield network[C]//Proc.2010 Sixth International Conference on Natural Computation.Beijing:IEEE Press,2010:1079-1083.
  • 4SENGUPTA DjILTIS R A.Neural solution to the multitarget tracking data association problem[J].IEEE Trans.Aerospace and Electronic Systems,1989,25(1):96-108.
  • 5MA R N,CHU P,ZHANGS R.Stability conditions for discrete delayed Hopfield neural networks[C]//Proc.Third International Conference on Natural Computation.Haikou,China:IEEE Press,2007:468-472.
  • 6SHEN Y,WANG J.Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances[J].IEEE Trans.Neural Networks and Learning Systems.2012.23(1):87-96.
  • 7MOULINES E,DUHAMEL P,CARDOSO J F,et al.Subspace methods for the blind identification of multichannel FIR filters[J].IEEE Trans.Signal Processing,1995.43(2):516-525.
  • 8GIANNAKIS G B,STOICA P,HUA Y B.Signal processing advances in wireless and mobile communication[M].Upper Saddle River,NJ,USA:Prentice Hall,2001.
  • 9张昀,张志涌.复数离散Hopfield网络盲检测64QAM信号[J].电子与信息学报,2011,33(2):315-320. 被引量:2
  • 10阮秀凯,张志涌.基于连续Hopfield型神经网络的QAM信号盲检测[J].电子与信息学报,2011,33(7):1600-1605. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部