期刊文献+

一种基于最优路径搜索的图像分类方法

Image Classification Algorithm Based on Optimal Path Search
下载PDF
导出
摘要 目前已经有多种基于树的算法来解决多类别图像分类问题,然而由于选择的学习和贪婪预测策略不当,这些算法在分类精度和测试时间效率间不能实现很好的均衡。提出一种新的分类器,当树形架构已知时能在效率和精度间实现很好的折中。首先,将图像分类问题转化为树结构中最优路径的搜索问题,提出新的类似于分支界定的算法来实现最优路径的高效搜索。其次,使用结构化支持向量机(SSVM)在多种边界约束下联合训练分类器。仿真实验结果表明,相对于当前最新"基于树"的贪婪算法,当应用于Caltech-256、SUN和Image Net 1K等数据集时,该算法在效率较高时的精度分别上升了4.65%,5.43%和4.07%。 Many algorithms based on tree are proposed to solve the image classification problem for a large number of categories. Due to learning and greedy prediction strategy choice of undeserved, methods based on tree - based representations cannot aehieve good trade - off between accuraey and test time efficieney. In this paper, a elassifier is proposed which achieves a better trade - off between efficiency and aecuracy with a given tree - shaped hierarchy. Firstly, the image classification problem is eonverted as finding the best path in the tree hierarchy, and a novel branch and bound - like algorithm is introduced to efficiently search for the best path. Secondly, the elassifiers are trained using a Structured SVM (SSVM) formulation with various bound constraints. Simulation results show that, this method achieves a significant 4. 65% , 5.43%, and 4. 07% improvement in aceuracy at high effieieney compared to state -of- the -art greedy "tree- based" methods on Caltech- 256, SUN and ImagcNet 1K dataset, respectively.
出处 《电视技术》 北大核心 2014年第23期164-169,173,共7页 Video Engineering
基金 国家自然科学基金项目(61373070/F020501)
关键词 图像分类 分支界定 最优路径 贪婪算法 效率 精度 image classification branch and bound optimal path greedy algorithm efficiency accuracy
  • 相关文献

参考文献15

  • 1DENG J,DONG W,SOCHER R,et al. ImageNet: A large - scale hier-archical image database [ EB/OL ] . [ 2014 - 05 - 15 ] . http://www. researchgate. net/publication/221361415_ImageNet_ A_large -soale_hierarchical_image_database.
  • 2XIAO J,HAYS J,EHINGER K,et al. Sun database : Large - scale scenerecognition from abbey to zoo [ EB/OL ] . [ 2014 - 05 - 15 ] . http://www. researchgate. net/publication/221362554_SUN _database _Large -scale 一scene一recognition一from_abbey_to一zoo.
  • 3BENGIO S, WESTON J, GRANGIER D. Label embedding trees forlarge multi - class tasks [ EB/OL ] . [ 2014 - 05 - 15 ] . http://www. researchgate. net/publication/221618910 _ Label _ Embedding __Trees_for__Large_Multi - Class_Tasks? ev = auth一pub.
  • 4GAO T, KOLLER D. Discriminative learning of relaxed hierarchy forlarge — scale visual recognition [ EB/OL] ? [ 2014 — 05 - 15]. http://www. sciweavers. org/publications/discriminative - learning ~ relaxed -hierarchy - large - scale - visual - recognition.
  • 5陈荣,曹永锋,孙洪.基于主动学习和半监督学习的多类图像分类[J].自动化学报,2011,37(8):954-962. 被引量:74
  • 6张淳杰,熊威,张一帆,梁超,张维刚,黄庆明.融合有判别力仿射局部特征上下文的图像分类[J].计算机辅助设计与图形学学报,2014,26(5):762-766. 被引量:2
  • 7徐杰,景丽萍,于剑.基于超边相关性的图像分类方法[J].模式识别与人工智能,2014,27(2):120-126. 被引量:2
  • 8II L Multiclass boosting with repartitioning[EB/OL]. [2014 -05 -15].http://www. researchgate. net/publicadon/221345684_Multiclass_boosting_with_repartitioning.
  • 9ALLWEIN E L’SCHAPIRE R E,SINGER Y. Reducing multiclass tobinary : a unifying approach for margin classifiers [ J ]. J. Mach. Learn.Res. ,2011,2(1) :113 -141.
  • 10BEYGELZIMER A, LANGFORD J, LIFSHITS Y,et al. Conditionalprobability tree estimation analysis and algorithms[ EB/OL]. [2014 -05-15]. http://www. researchgate. net/publication/24166858_Con-ditional_Probability_Tree_Estimation_Analysis_.and_Algorithms.

二级参考文献46

  • 1Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4.
  • 2Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242.
  • 3Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118.
  • 4Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66.
  • 5Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294.
  • 6Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157.
  • 7Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248.
  • 8Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379.
  • 9Zhu X J. Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison. USA. 2008. 11-13.
  • 10Riloff E, Wiebe J, Wilson T. Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the 7th Conference on Natural Language Learning. Stroudsburg, USA: Association for Computational Linguis- tics, 2003. 25-32.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部