期刊文献+

C_Z-偏序集

The C_Z-posets
原文传递
导出
摘要 我们将强Z-连续偏序集推广到了CZ-偏序集,并讨论了CZ-偏序集和强Z-连续偏序集之间的关系。同时我们定义了CZ-偏序集上的CZ-连续映射,得到CZ-偏序集在该映射下的像集仍是CZ-偏序集。最后,我们讨论了CZ-偏序集上的基及其相关性质。 In this paper, we introduce Cz-posets which generalize strongly Z-continuous posets and we discuss the relations between Cz-posets and strongly Z-continuous posets. Moreover, we define Cz-continuous mappings and obtain the conditions under which images of Cz-posets are also Cz-posets. Finally, we investigate bases of Cz-posets and obtain some properties of these bases.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第5期76-79,共4页 Fuzzy Systems and Mathematics
基金 湖南省科技厅一般项目(2012FJ3145)
关键词 CZ-偏序集 强Z-连续偏序集 Bases Cz-posets Strongly Z-continuous Posets
  • 相关文献

参考文献12

  • 1Gierz G, Hofmann K H, Keimel K, Lawson J D, Mislove M, Scott D S. Continuous lattices and domains[M].Cambridge University Press, 2003.
  • 2Lawson J D, Xu L S. When does the class [A→B] consist of continuous domains?[J]. Topology Appl. ,2003, 130:91-97.
  • 3Xu L S. Continuity of posets via Scott topology and sobrification[J]. Topology Appl. ,2006,153:1886-1894.
  • 4李庆国,李纪波.Z-代数格和Z-代数交结构[J].模糊系统与数学,2008,22(3):54-57. 被引量:1
  • 5Zhao B, Zhao D S. Lim-inf-convergence in partially ordered sets[J]. J. Math. Anal. Appl. ,2005,309(2):701-708.
  • 6Wright J B, Wagner E G, Thatcher J W. A uniform approach to inductive posets and inductive closure[J]. Theoret. Comput. Sci. ,1978,7:55-77.
  • 7Venugopalan G. Z-continuous posets[J]. Houston J. Math. , 1986,12: 275-294.
  • 8Babdelt H J, Ern6 M. Representations and embeddings of M-distributive lattices[J]. Houston J. Math. , 1984,10 (3) : 315-324.
  • 9Babdelt H J, Erne M. The category of Z-continuous posets[J]. J. Pure Appl. Algebra, 1983,30(2) : 219- 226.
  • 10Erne M. Z-continuous posets and their topological manifestation[J]. Applied Categorical Structures, 1999,7:31 - 70.

二级参考文献8

  • 1徐晓泉,罗懋康,黄艳.拟Z-连续domain和Z-交连续domain[J].数学学报(中文版),2005,48(2):221-234. 被引量:13
  • 2Davey B A,Priestley H A. Introduction to lattice and order[M].The Press Syndicate of the University of Cambridge, 2002.
  • 3Raney G N. Completely distributive complete lattices[J]. Proc. Amer. Math. Soc. , 1952, (3) :677-680.
  • 4Wright J B,Wagner E G,Thatcher j w. A uniform approach to inductive posets and inductive closure[J].Theoret. Comput. Sci. , 1978, (7) : 55-77.
  • 5Baranga A. Z-continuous posets[J]. Discr. math. , 1996, (152) :33-45.
  • 6Erne M. Z-continuous posets and their topological manifestation[J]. Appl. Categ. Stru. , 1999, (7) : 31-70.
  • 7Bandelt H J,Erne M. The category of Z-continuous posets[J].J. Pure and Appl. Algebra, 1983, (30) :219-226.
  • 8Powers R C,Riedel T. Z-semicontinuous posets[J].Order,2003, (20) :365-371.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部