期刊文献+

模糊结构元诱导的两类加权模糊数度量

Two Types of Weighted Fuzzy Number Metrics Induced by Fuzzy Structured Element
原文传递
导出
摘要 针对模糊数度量中不同隶属程度对度量的贡献程度应不同的客观事实,给出两类模糊数的结构元加权度量。首先,在区间[-1,1]上的同序标准单调有界函数类B[-1,1]上定义两类结构元加权度量dH、dp,分别讨论了这两类度量空间的完备性和可分性;其次,利用正则模糊结构元导出的模糊泛函,给出一种由B[-1,1]上度量诱导有界闭模糊数全体上的度量方法,进而给出由dH、dp诱导的两类模糊数结构元加权度量dNH、dNp,并分析了两类诱导的模糊数度量空间的完备性和可分性;最后,给出了dNH、dNp与传统方法定义的模糊数度量的区别与联系。 For the objective fact that elements with different membership degrees should have different contribution to the metric measure between fuzzy numbers, this paper presents two types of fuzzy number metrics weighted by structured element. Firstly, we define two kinds of metrics weighted by structured element dH,dp on the family (B [-1, 1]) of all the same monotone and standard bounded functions on closed interval [-1,1], and discuss the completeness and separability of those two metric spaces. Next, using the fuzzy functional induced by normal fuzzy structured element, we give out a method that the metric of the closed bounded fuzzy number space is induced by the metric on function space B[-1,1]. Furthermore, two types of fuzzy number metrics dNH,dNp weighted by structured element which both are induced by dNH,dNp are presented, and analyze completeness and separability of the two induced fuzzy number metric spaces. Lastly, the difference and relationship between dNH,dNp and the metrics defined by traditional method are shown.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第5期93-102,共10页 Fuzzy Systems and Mathematics
基金 教育部高校博士学科点专项科研基金资助项目(20102121110002)
关键词 模糊数 模糊结构元 减弱函数 E-Hausdorff度量 E-Lp度量 Fuzzy Number Fuzzy Structured Element Weighted Function E-Hausdorff Metric E-Lp Metric
  • 相关文献

参考文献6

二级参考文献25

  • 1吴从炘 薛小平.模糊值函数分析学的若干进展.模糊系统与数学,2002,16:1-6.
  • 2Zhang G. Fuzzy continuous function and it's properties[J]. Fuzzy Sets and Systems, 1991,43:159-171.
  • 3R Jain.Decision making in the presence of fuzzy variables[J].IEEE Trans Systems Man Cybernet,1976,SMC-6: 698~703.
  • 4R Jain.A procedure for multiple-aspect decision making using fuzzy set [J].Internat J Systems Sci,1997,8: 1~7.
  • 5R R Yager.On choosing between fuzzy subsets[J].Kybernetes,1980,9: 151~154.
  • 6R R Yager.A procedure for ordering fuzzy sets of the unit interval[J].Inform Sci,1981,24: 143~161.
  • 7J M Adamo.Fuzzy decision trees[J].Fuzzy Sets and Systems,1980,4: 207~219.
  • 8W Chang.Ranking of fuzzy utilities with triangular membership functions[A].Proceedings of International Conference on Policy Analysis and Systems[C],1981.263~272.
  • 9L Campos,A Munoz.A subjective approach for ranking fuzzy numbers[J].Fuzzy sets and Systems,1989,29: 145~153.
  • 10K Kim,K S Park.Ranking fuzzy numbers with index of optimism[J].Fuzzy Sets and Systems,1990,35: 143~150.

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部